
Process Flow Features as a Host-Based Event Knowledge

Representation

THESIS

Benhur E. Pacer Jr, Captain USAF

AFIT/GCS/ENG/12-06

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government. This material is declared a work of the U.S Government and is
not subject to copyright protection in the United States.

AFIT/GCS/ENG/12-06

Process Flow Features as a Host-Based Event
Knowledge Representation

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Benhur E. Pacer Jr, B.S. Computer Engineering

Captain USAF

June 2012

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCS/ENG/12-06

PROCESS FLOW FEATURES AS A HOST-BASED EVENT

KNOWLEDGE REPRESENTATION

Benhur E. Pacer Jr, B.S. Computer Engineering

Captain USAF

Approved:

Dr. Gilbert L. Peterson
(Chairman)

!ILL! df!bh
Dr. Robert F. Mills
(Member)

~~-~
Dr. Michael R. Grimaila, CISM, CISSP
(Member)

~ I N{ AV 2 .. L> 1'7...,
date

date

-'3 ' rvlrkj Zfl I 2
date

AFIT/GCS/ENG/12-06

Abstract

Malicious software, or malware, are programs with malicious intent [1], and can

exists in the form of viruses, worms, trojan horses, spyware, and rootkits. The detec-

tion of malware is of great importance but even non-malicious software can be used

for malicious purposes. Monitoring processes and their associated information can

characterize normal behavior and help identify malicious processes or malicious use

of normal process by measuring deviations from the learned baseline. This exploratory

research describes a novel host feature generation process that calculates statistics of

an executing process during a window of time called a process flow. Process flows are

calculated from key process data structures extracted from computer memory using

virtual machine introspection. Each flow cluster generated using k-means of the flow

features represents a behavior where the members of the cluster all exhibit similar

behavior. Testing explores associations between behavior and process flows that in

the future may be useful for detecting unauthorized behavior or behavioral trends on

a host. Analysis of two data collections demonstrate that this novel way of thinking of

process behavior as process flows can produce baseline models in the form of clusters

that do represent specific behaviors.

iv

Acknowledgements

To my advisor Dr. Gilbert Peterson, thank you for your help and getting me past

some rough times. I had many technical road blocks, thank you for calming me down

when the stress level was high and providing the much needed mentorship.

To my parents, thank you for all your support. You both were always there

when I needed someone to talk to when facing burnout from school and kept me

motivated.

Benhur E. Pacer Jr

v

Table of Contents
Page

Abstract . iv

Acknowledgements . v

List of Figures . ix

List of Tables . x

List of Abbreviations . xii

I. Introduction . 1
1.1 Impact of Research . 2

1.2 Research Overview . 2
1.2.1 Problem Domain. 2
1.2.2 Past Research 3
1.2.3 Problem Statement and Hypothesis 3

1.2.4 Data Source . 4
1.2.5 Assumptions and Limitations 5

1.2.6 Results . 6
1.3 Summary . 6

II. Literature Review . 8
2.1 Intrusion and Computer Security 8

2.2 Evidence of an intrusion 9
2.3 Data collection implementation 9

2.4 Intrusion Detection Systems (IDS) 10

2.4.1 Approach Methodologies 12

2.4.2 Statistical and Machine Learning Techniques For
Intrusion Detection 18

2.4.3 Network based intrusion detection systems (NIDS) 24

2.4.4 Host based intrusion detection systems (HIDS) . 27

2.5 Flow-Based Features . 33
2.5.1 Network Based Flow-Based Features 34

2.6 Summary . 35

vi

Page

III. Methodology . 36

3.1 Problem Definition . 36
3.1.1 Research Goals 37
3.1.2 Expected Outcome 38

3.1.3 Assumptions . 38

3.2 Research Approach . 39

3.3 Host Based Process Flow Features 39
3.3.1 Compiled Memory Analysis Tool (CMAT) . . . 40

3.3.2 Data Preparation 41

3.3.3 Host-Based Process Flow Feature Generation . . 43
3.3.4 Process Flow and Features 44

3.4 Clustering . 46

3.5 Similarity Measure . 48

3.6 Designator Analysis of Host-Based Process Flow Feature 48

3.6.1 Script Data, Controlled Experiments 48

3.6.2 Uncontrolled Experiments 50

3.7 Disadvantage of the Selected Research Methodology . . . 52

3.8 Summary . 53

IV. Results Analysis . 55

4.1 Controlled Experiment 55

4.1.1 Parameter Settings 56

4.1.2 Data Efficacy of Clusters on Individual Processes 60

4.1.3 Tracking distinct processes 62

4.1.4 Test of Clusters 68
4.1.5 Data Collect and Problems 70

4.2 Unlabeled Data Collect: Uncontrolled Experiment 72

4.2.1 Window 2003 OS, CMAT Captures 72

4.3 Windows7 Operating System HACKFEST 74

4.3.1 Cluster Analysis For Windows 7 OS: BSOD - 19 74

4.3.2 BSOD - 19 Amount of Clusters needed 82
4.3.3 Using BSOD - 19 clusters with other Data Set

(CAE-18) . 84

4.3.4 Data Collect and Problems 87
4.4 Summary . 88

vii

Page

V. Conclusions . 90
5.1 Limitations and Assumptions 91

5.1.1 Sensor Impact and Virtual Environment 92

5.1.2 Memory as an Observable Environment 92

5.2 Contributions . 92
5.3 Future Work . 93

Appendix A. Normal Activity Script 95

A.1 Script Labeled Data Collect 95

Bibliography . 100

viii

List of Figures
Figure Page

2.1. Teodoro et al., The components an IDSs from the definition from

the CIDF [2] . 12

2.2. Mukhopadhyay et al., The components of Intrusion Detection

and Prevention System for a signature system [3] 13

2.3. Laureano et al. HawkEye Flow Diagram [3] 14

2.4. Shon and Moon Enhanced SVM approach to an IDS [4] 21

2.5. Laureano, et al. Model for protecting HIDS sensors using virtual

machines [5]. 29

2.6. Malan et, al. Model HIDS for detection of worms [6]. 30

2.7. Feng, et al. HIDS model with alert fusion [7]. 31

4.1. Index Score for Window 5. 59

4.2. Index Score for Window 10. 60

4.3. DLL Features for Cluster 15. 64

4.4. Average DLL and File Handle Permissions Features for Cluster

15. 65

4.5. DLL Features for Cluster 89. 66

4.6. Average DLL and File Handle Permissions Features for Cluster

89. 67

4.7. DLL Features for Cluster 98. 68

4.8. Average DLL and File Handle Permissions Features for Cluster

98. 69

4.9. Davies-Boldin Dunn Index Sliding Window 5 on Windows 7 . 82

4.10. Davies-Boldin Dunn Index Sliding Window 10 on Windows 7 . 83

4.11. Davies-Boldin Dunn Index Sliding Window 20 on Windows 7 . 83

ix

List of Tables
Table Page

3.1. The Database Tables Created from the CMAT Feature Files Out-

put . 42

3.2. Raw CMAT Output Files . 42

3.3. Process Flow Characteristics 44

3.4. An instance of Processes Flow and Features 45

4.1. Timeline for Controlled Experiment. 55

4.2. Computer 7 4 k −Means3resultsofthemostpopulatedclusters. 61

4.3. SearchProtocol and Accompanying Processes. 61

4.4. Controlled Experiments Process Flows. 62

4.5. Controlled Experiments Process Flows with DLL Features. . . 63

4.6. Controlled Experiments Clusters File Handles with Permissions. 63

4.7. Controlled Experiments Process Flows Registry Key Features. . 63

4.8. Timeline for Controlled Experiments with Anomalous Processes. 70

4.9. The anomalous processes hiding under notepad.exe 71

4.10. Hackfest BSOD-02 TimeLine. 73

4.11. Assigned PIDs Application Name. 73

4.12. Cluster Characteristics model for 16 clusters. 74

4.13. Hackfest BSOD-19 TimeLine 74

4.14. Hackfest BSOD-19 Applications. 76

4.15. Hackfest BSOD-19 chrome.exe. 76

4.16. Hackfest BSOD-19 Initialization, Ports. 77

4.17. Hackfest BSOD-19 chrome.exe, iexplore.exe and nessus. 78

4.18. Hackfest BSOD-19 chrome.exe, iexplore.exe 79

4.19. Hackfest BSOD-19 chrome.exe, iexplore.exe initialization cluster. 80

4.20. Hackfest BSOD-19 chrome.exe, iexplore.exe clusters. 81

x

Table Page

4.21. Hackfest BSOD-19 chrome.exe, iexplore.exe clusters. 81

4.22. Hackfest CAE-18 TimeLine. 84

4.23. Hackfest CAE-18 chrome.exe, iexplore.exe clusters 84

A.1. The normal activity script for computer 95

xi

List of Abbreviations
Abbreviation Page

DoD Department of Defense . 1

IDS Intrusion Detections Systems 1

NIDS Network-Based Intrusion Detection System 2

HIDS Host-Based Intrusion Detection System 2

VMI virtual machine introspection 4

CMAT Compiled Memory Analysis Tool 4

GA genetic algorithm . 22

VMI virtual machine introspection 36

OS Operating System . 36

GUI graphical user interface . 37

GUI Graphical User Interface 39

SCADA supervisory control and data acquisition 93

USAF United States Air Force 93

xii

Process Flow Features as a Host-Based Event

Knowledge Representation

I. Introduction

The meaning of “cyberspace” is highly debated among United States military

officials and the computer security community. The Department of Defense (DoD)

has defined cyberspace as a war fighting domain [8]. A domain that is no different

from air, land, sea and space where military operations and tactics can be used against

advisories. Organizations and government agencies are in a constant race to develop

new methods and tools to defend their computer assets from “attackers” from other

nation states, terrorist organizations, or individuals. The development of intrusion

detections systems (IDS) were developed to combat these threats of intrusions. IDS

have two distinct strategies, using known signatures to identify attackers (signature-

based IDS) or using baseline models that represent a range of normal states of a

computer system (anomaly-based IDS).

Anomaly-based IDS has the advantage of detecting previously unseen novel

attacks [9]. The tradeoff for an anomaly based system is it increases the number

of false positive alerts [9]. Research on anomaly based IDS shows promising results

but lacks the accuracy to implement in the commercial market. Some of the reasons

for the lack of accuracy is the type of features that the system monitors. The data

source should provide the most accurate and up to date information of the state of

the computer. The sensor that monitors the data source has to be reliable as well

as the sensor itself has to be protected from attacks. The most important aspect of

anomaly based IDS is the training data must be diversified enough to capture most

of the normal behavior of a computer system. The purpose of this research is to

develop host computer memory understanding, and determine if a method could be

used to effectively group similar processes together based on their behavior to focus

a computer security operator to a potential threatening program on the system.

1

1.1 Impact of Research

A signature-based IDS is accurate in detecting known intrusions where the sig-

nature patterns are known [10]. New attack signatures are added to a scanning

database when discovered, but before this update occurs an attacker could go unde-

tected compromising target computer systems for months. With the growth of the

internet and networked systems the updating of intrusion signatures would become

man power intensive because a new entry to the scanning database may need to be

made for every variant of the same attack.

For anomaly detection in computers systems, the decision space is too large to

effectively find the best set of features to use for a Network-Based Intrusion Detection

System (NIDS) and Host-Based Intrusion Detection System (HIDS) [11]. A process is

the fundamental element of a program in memory. If the features of a process can be

monitored a method can be developed to baseline that behavior. The “notepad.exe”

process in one computer should have the same characteristics running in another

computer. If a process identifies itself as “notepad.exe” but deviates from the known

baseline behavior then an alert is made to a system administrator. In addition,

processes with similar behavior should also have similar characteristics. This research

identifies the data in memory associated with a process that characterizes its dynamic

behavior. A model of a process characterizes the process behavior in memory and a

method is developed to detect processes that deviates away from a given baseline.

1.2 Research Overview

1.2.1 Problem Domain. The cyberspace domain is an infinitely large search

space and selecting the best subset of features that describes the domain is an in-

tractable problem [12]. Situational awareness tools only observe a portion of the

threat space. The limitation in storage space, processing power and time are factors

a system must handle because it’s not possible to observe all combinations of threat

in cyberspace. The tradeoff for all derived implementations of situational awareness

tools are effectiveness or efficiency.

2

1.2.2 Past Research. Most of today’s current threat detection systems are

signature based tools; to which updates are made as new threats are discovered [10].

The period of time when these threat are discovered and when updates are received can

be long enough for threats such as malicious software to infect many computers. The

attractiveness of anomaly based tools for detecting novel attacks has led to research

on several methods to perform threat detection and classification [13] [14] [15] [2].

Chapter II presents an overview on some of the academic research, challenges and

implementations of observing the threat space. Several research areas include using

network traffic, host based features or a combination of both to determine intrusions

[9] [16] [14] [17] [2] [18].

Eskin, et al. [19] developed a framework for unsupervised learning for anomaly

detection with no reliance on labeled data. More specifically they proposed a clus-

tering algorithm that uses a radius parameter assigned to clusters. The clustering

algorithm then has the ability to detect outliers outside the threshold length of the

radius. No research effort has been attempted to implement a clustering algorithm

using the dynamic process behavior in memory.

In [20], Windows sysinternal suite of tools used in the digital forensics field for

situational awareness was used as senors for monitoring relevant operating system

objects. These tools are a set of many little software programs that monitor only one

type of feature or object in the operating system. The combination of all of these

tools outputs was used to train an artificial neural network for detection of anomalies.

In [21], network features that characterize statistical packet behavior called “flows”

were combined with Windows sysinternal tools. The research combined both network

and host information for a method to potentially detect intrusions.

1.2.3 Problem Statement and Hypothesis. A “process” is a program in

execution. The difference between a program and processes is a program is a passive

entity in a computer and a process is an active entity associated with resources. As

programs execute in memory the accessing of memory features provides a great data

3

source for cyberspace situational awareness. According to Carvey [22], some malware

may only exist in memory evading anti-virus signature scans.

From the data in memory an abstraction to features of processes called flows

are made. Clustering of the flows groups similarly behaving process together. These

groups provide the correlation to individual processes with its behavior. Group-

ing known processes together provides the means for finding potential threats. The

hypothesis for this research is that these groupings exists when using process flow

features extracted from memory using virtual machine introspection.

The goal of this research is to use virtual machine introspection(VMI)to eval-

uate the novel use of host based process flow feature clustering to model processes

behaviors. The system is categorized as Host-Based detection with the data of inter-

est as memory features. The Compiled Memory Analysis Tool (CMAT) is a forensic

analysis tool that provides the VMI sensor, capable of live memory captures of a sys-

tem. It works by capturing the host operating system memory while operating in a

hyper visor environment, producing five feature files approximately every 30 seconds

and one file that relates to registry key information every 30 minutes.

1.2.4 Data Source. Two data sources were used in the training and test-

ing. The first data set consists of a scripted event to provide time stamps for when

applications were running and provides a means to generate a labeled data set. This

test focuses on encapsulating different computer applications of the same type, for

example three different internet browser were used. A known anomalous process was

created using a free software tool that masquerades as a different processes. The

masquerading processes and the other test data was manually labeled. Testing of the

resultant behavior clusters shows that similar process behaviors do group together.

The second data set was collected from a set of computers in an isolated network

during the ACE HACKFEST exercise. The HACKFEST exercise consisted of two

teams that had the objective to defend there assigned computer assets and at the

same time attack the other teams assets. The CMAT sensor was placed on a Xen

4

hypervisor monitoring Window7 and Windows 2003 guest operating systems. Out of

the 20 Windows 7 and Windows 2003 computer, less than half were usable due to

data constraints. It was discovered that some of the CMAT sensors crashed at some

point and was not discovered until the exercise was over, resulting in incomplete or no

information. Another problem with the CMAT sensor outputs was the frequency of

the sensor outputs was inconsistent. This was an important aspect in characterizing

processes behavior in a given time window, those outputs that had very dissimilar

frequencies were eliminated as a data source. In the standard configuration of CMAT,

five feature files output every 30 seconds and a memory dump with another feature file

is captured every 30 minutes. An artifact of this is when a memory dump is captured

the five output feature files are delayed for more that a couple of minutes. In spite

of this problem, using the acceptable data shows that chrome.exe and iexplore.exe

cluster initialization phase identifiable different process behave the same.

1.2.5 Assumptions and Limitations. The limitations of CMAT are that

the sensor feature file outputs were inconsistent mostly because of a software crash

during the exercise with nobody taking notice to restart the sensor. The HACKFEST

exercise was an uncontrolled event, but looking at the activity logs most of the attacks

did not inject or spawn anomalous processes in the target system. The attacks were

denial of service types that the information in memory would not reflect as anomalous.

The big assumption was that the data set used for training was considered clean from

anomalous processes. Because the CMAT sensor feature files outputs are delayed

more than a few minute when the memory dump is captured every 30 minutes a

noticeable gap in time was observed. Between these events, the file outputs every

17 to 65 seconds. These temporal inconsistencies are dropped when extracting the

feature file over a given time window. In other words, the file outputs are considered

equal separation. If the time window that describes the behavior of a processes is 10,

{T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10} an assumption is that the time lapsed between

5

each discrete time is the same. A process flow is then derived from this sliding window

of 10 discrete time instances.

1.2.6 Results. The results of the experiments provided an initial indication

that behavioral relationship can be correlated to clusters. Activities on a computer

for two data sets were generated and a correlation between clusters and process be-

havior were observed. This research was exploratory and the goal was to examine if a

connections of process behavior to the statistical feature set calculated from processes

executing in memory was possible. No definitive conclusions were made but a strong

trend was observed that clustering process flows did provide distinct behavior rela-

tionships. An example is a cluster with network work activity included applications

such as internet browsers. The cluster would be labeled a communication cluster and

an application like an internet browser would be assigned to this cluster when the

behavior of communicating over the internet is observed. A fraction of the collected

data set was evaluated based on isolating valid data from invalid data. The valid

data had consistent frequencies of CMAT outputs. With this small data sets four

processes Outlook, notepad.exe, calc.exe, and exporer.exe were used to show a trend

that similar processes in different computers behaved similarly and similar processes

in the same computer behaved similarly as they were assigned to the same clusters.

1.3 Summary

The clustering algorithm successfully grouped liked process applications to-

gether exploratory observations was made by looking at the application names as

it presents itself in the CMAT output files. New instances of a processes flows were

successfully identified by application types using the Euclidian distance measure from

the training cluster’s centroid. The training data must be diversified, clean and accu-

rately describes a standard set of processes in a computer. A computer in a military

network would have different set of applications running than a home computer be-

cause of the purpose of the computer system. The 194 feature set implemented in

6

this research could be used in future research for modeling different types of com-

puter systems with distinct different purposes. This method can be implemented on

a system that has a specific task.

7

II. Literature Review

This chapter presents an overview of prior research and existing technologies to per-

form attack classification using relevant host memory features. This chapter provides

background of the current research and approaches using purely host features, net-

work features or a combination of both. The topics include a discussion of intrusion

detection system followed by an overview of most machine learning techniques used

for detecting intrusions.

2.1 Intrusion and Computer Security

Intrusion detection systems are increasing in importance because of the greater

role computers play in everyday life. Cyber-criminals and hackers are using this

increase dependency on computers to target more individuals for intrusion. Today

IDSs play a vital role in combination with intrusion prevention methods such as

authentication, secure software design, and information protection like encryption.

Easy accessibility to the internet and networks has increased the amount of potential

threats from hackers [3].

Intrusions are events or actions that attempts to compromise the confidentiality,

integrity, or availability of resources [10]. Intrusion detection is the process of moni-

toring and collecting data from the target computer. The gathered data is analyzed

to find evidence of an intrusion. Intrusion detection system (IDS) is the automated

process that implements intrusion detection [10] [13].

A variety of intrusions exists from programs that damage computer systems such

as worms, viruses and trojan horses to theft related intrusions with the purpose on

stealing information such as computer theft, financial fraud and military and business

secrets. A complete prevention of intrusions is not possible so detecting intrusions is

an important aspect of security to minimize the damage as a result of intrusions [23].

8

2.2 Evidence of an intrusion

A computer is a system that stores data and processes data. Thinking of the

data in a computer as evidence when investigating an intrusion, the practice of forensic

science can be applied to answer the fundamental questions of “What”, ”Where”,

“When”,“How”, and “Who” relating to the attack or intrusion. The challenge is

to apply forensic science to a computer system with a large amount of data and do

the analysis fast to have a real time system. According to Inman and Rudden [24],

forensic science is an applied science based on the laws of physics and chemistry. The

five concepts of evidences are transfer, identification, individualization, association,

and reconstruction. Inman and Rudden proposes a sixth concept, the idea of matter

dividing before transfer. The initial key step is identifying the evidence to analyze.

In designing an IDSs the identifying of evidence to analyze is very difficult because of

the wide range of computer models and the amount of data the computer can hold.

According to Inman and Rudden matter must divide before it can be transferred.

In the digital world and dealing with digital evidence we can take this concept and

for components of the divided digital evidence it holds that these component parts

will have characteristics from the original components. Digital evidence from an

attack or intrusion will have characteristics of an attack or intrusion. Determining

these characteristics is very difficult, instead we can take the evidence in a computer

system performing and behaving normal then gather evidence. From the gathered

evidence we can define characteristics as normal or not an intrusion or attack. An

IDS will monitor the same evidence and if it deviates in characteristics from normal

it is assumed to be an intrusion and an alarm is set.

2.3 Data collection implementation

There are two main methods to collect data, interval-based or continuous [10].

The interval-based data collect method also referred to batch mode collects the data

in a non-continues format. This method is usually found in HIDS where the data are

the log events generated in a file. The continuous method uses a continuous flow of

9

information and is usually implemented in NIDS where the flow of information are

the packets of the network [10].

An IDS is only as good as the data it collects. The data must be reliable

and complete [13]. The Windows operating system provides an auditing mechanism

with several logs available for use. The most commonly used logs are the applica-

tion, security and system logs. The application log event entries are triggered with

applications running on the host system. The security log contains events of login

information and events related to resources on the system. The system logs contains

system component information such as driver failure and hardware issues. Some logs

are customizable for use by the IDS, with some auditing system may be configured to

record every single system calls invoked by every process in the operating system [13].

Collecting data without analysis is useless [13]. Auditing a computer system

has no benefits if the data collected is not used. There are two strategies on how to

analyze the data: misuse detection method and anomaly detection method.

2.4 Intrusion Detection Systems (IDS)

An IDS is a system that detects evidence of an intrusion [9] [13]. The system

initiates responses depending on the implementation. The most common response

is a warning to the system administrator or user such as a pop up window with a

description of the intrusion. The purpose of an IDS is to collect data on the computer

system it monitors and initiate some action in response after detecting evidence of an

intrusion [13]. A manual process was the predecessor and an automated process was

developed because it overwhelmed the system administrator whose task was to find

intrusion form the data collected.

A current computer, commercial of the shelf, comes with a firewall, an operating

system with automated patching if connected to the internet, virus protection and

has options to password protect resources. With the current security architecture

in place, it is necessary to add an IDS. The IDS gives an extra protection against

10

attacks. With any security architecture in place an intrusion may still occur. [13]

An IDS does not stop all attacker from penetrating the computer security but will

make it more difficult. It acts as a deterrent from intruders attempting to attack if

the known system has an IDS installed. According to Bace et al [10], the goal of the

computer security management team is to affect the behavior of users. If there is a

risk of getting caught doing some illegal activity the users are less likely to commit a

crime compromising the confidentiality, integrity and availability of resources stored

in organization’s computer system.

According to [2], there are four functional modules in an IDS: An event block

that acquires information called events, a database block that stores information from

the event block, an analysis block that analyzes the data from the database block,

and the response block that takes action against potential threats to the information

system. An IDS is categorized by the type of data it collects (network data or host

data), the analysis methodology (misuse or anomaly detection) and actions with re-

sponse to an indication by the IDS (active or passive) [10]. A signature based method

requires a database of known signatures and is updated when new attacks are found.

Anomaly based detection does not require a database of known signatures instead

uses a model of an estimate defining normal behavior of the system. Most systems

uses a model of normal behavior but another method described in [2], can use a model

of abnormal behavior. An alarm is generated when the given instance of an observa-

tion is within the threshold of the abnormal behavior model. The ultimate goal of an

IDS is to detect all intrusions (100% detection rate) with no false alarms (0% false

positive indication) but is very difficult, almost impossible. The set of features or data

selected for the analysis is important to minimizing the workload of the host system.

When the set of features is as small as possible the IDS is most efficient with respect

to speed. An IDS has many underlying optimization problems associated with it. An

IDS developer wants to maximize detection rate, minimize false positives indication,

maximize speed of computation, and minimize features selected all at the same time.

This multiple step optimization problem is an NP-hard problem. [25].

11

A working group created by DARPA in 1998 with the purpose of defining a

common framework in IDSs called the “Common Intrusion Detection Framework”

then later called the “Intrusion Detection Working Group” defined a general archi-

tecture based on four functional components [2]. Figure 2.1 shows the model from

the working group developed. The E-boxes are described as the sensor that gathers

the raw from the observed environment. The D-boxes are the database components

that stores the data from the E blocks. The A-boxes are the analysis portions of the

model and it analyzes the data from the database. The R block is the reactionary

block of the model if the system has the ability to apply a reaction to an intrusion.

Figure 2.1: Teodoro et al., The components an IDSs from the definition from the
CIDF [2]

2.4.1 Approach Methodologies. We have all this data from the IDS, network

or host data, can we use this to detect intrusions in the future? The two analysis

methods for detecting intrusions are misuse and anomaly detection [10] [7]. According

to Bace et al. misuse detection is finding what is known, in this case the intrusion

itself. Anomaly detection is finding how different a behavior characterized with values

in a computer system from a model of normal activity. If any differences with respect

to a threshold value then the snapshot of the computer that characterizes its behavior

is labeled as an intrusion.

2.4.1.1 Misuse detection using signatures (Knowledge Based). The

IDS with a signature based methodology uses known models of an attack. The known

model is stored in a knowledge database containing every attack the system can

12

detect. A signature methodology can only detect an intrusion that has knowledge of

by inserting the signatures into the database manually or through software updates

via downloading from the vendor’s website [10]

Current IDS products mainly use misuse analysis methodology to detect intru-

sion [10]. The system looks for pattern and these patterns are referred to as signatures

of an attack. The system monitors either network data, host data, or both and with

this data a search and compare is performed to match a predefine event or sets of

events has occurs [10]. The events or set of events is the signature of an attack. Every

attack with the signatures known by the system can detect the intrusion. Any new

attack without a signature defined will go undetected.

The main advantage of misuse detection is the accuracy the system provides [10].

An IDS with misuse detection generates very low false positives because the system

compares and looks for known attacks with exact known signatures. There is a high

level of confidence that what the system labels as an attack is really an attack. In

many academic literature the disadvantage of misuse detection is the inability to

detect novel intrusions [10] [14].

Figure 2.2: Mukhopadhyay et al., The components of Intrusion Detection and
Prevention System for a signature system [3]

13

In [3] Laureano et. al proposed a method that uses a signature based intrusion

detection and prevention system called HawkEye. Its a system that contains 5 special-

ized components: sensor, management server, database, console, and a demilitarized

zone. The basic system flow is shown in figure 2.3. An event record is created then

written to a file. The target agent or program then sends the file to the command

console. The detection engine is used to match signatures from the recorded events

of the file. A log system records all raw data from the incoming recorded events from

the target system. If a known signature is found from then an alarm is generated. A

response is generated to the target system after an alarm is generated and it gives

system the ability to react to a threat.

Figure 2.3: Laureano et al. HawkEye Flow Diagram [3]

2.4.1.2 Anomaly Detection (Behavioral Based). Traditional intrusion

detection system based on signature matching or pattern matching is outdated be-

cause of the sophistication of the types of attacks used [26]. Anomaly detection with

the ability to detect novel attacks has lead to numerous research to improve the ac-

curacy and reduce the false positives, that past systems had problems with [7] [23].

A model of normal activity is compared to the gathered data of the target computer

system. If the data deviates from the model, the state when the data was collected

14

is flagged as an intrusive activity [13] [23] [2]. Anomaly detection assumes everything

that deviates from the normal activity model is intrusive. The comparison of data

to the model is the easy part, the difficult task is coming up with the model that

represents normal activity. Anomaly detection needs relevant data to train the IDS.

The model constructed is from historical data collected over a period of time called

the gathering and learning phase of the system.

Anomaly detection is not meant to replace an existing systems using a misuse

detection method but is better implemented as and add-on system [14]. The earliest

work using anomaly detection was by Dorothy Denning. Denning used a host-level

system that modeled user profiles activity. Some of the features the system monitored

were login frequency, password attempts/failures, session duration and computer re-

source consumption. The assumption were attacks or intrusions were different in terms

of the monitored data from normal computer behavior or normal network traffic.

The Anomaly based detection is very appealing because of the ability to find

intrusion without any prior knowledge of the attack or intrusive characteristics. New

threats change constantly and new methods must be developed to detect these threats.

In recent years anomaly based intrusion detection systems either using network or host

data are just starting to appear in practice [2]. Anomaly based IDS’s lack of presence

in network or host security systems are because the numerous false positive alerts

current systems are plagued with.

The polymorphic behavior of modern hackers is making signature based IDS

almost impossible to catch. A hacker can apply different variations to an attack used

to a vulnerability. This little variations would have to correspond to a different sig-

nature in an expert system IDS in order for the IDS system to detect every variations

of the same attack [26]. Anomaly detection is the natural go-to method to counter

the problem of having to generate every signature for every attack. Instead of many

model that represents every attack called an attack signature, the anomaly detection

method attempts to model normal activity in a computer system in one model. Any

15

deviation away from this one model is then considered anomalous. In this system all

anomalous activity is assumed to be an intrusion and an alarm is set [26].

Threshold detection, statistical measures, rule based measures, neural networks,

genetic algorithms and immune system are some of the methods used for calculating

the deviations from the collected data that represents the computer’s behavior to

the normal behavior model [10] [23]. Threshold detection method monitors certain

attributes of a user’s behavior that is countable or measurable and if the monitored

attribute exceeds the threshold defined by the developers of the IDS then an alarm

indicating an intrusion has occurred.

Statistical measures are another method used for analyzing data for detecting

intrusions. This assumes the distribution of the attributes of the profile describing

the normal behavior could be modeled in traditional well known statistical models

[10] [23]. If the distribution is unknown then a learning step is required to learn the

distribution from past observed data of the system. Statistical anomaly builds two

profiles with one consisting of data from a training phase and the other profile is the

current state of the computer system. The training state profile is assumed to display

normal activity of the computer. The two profiles are compared and if any deviations

from the training profile, the current profile is identified as an intrusion [23]. Using a

rule based detection method, rules define the thresholds instead of a numerical value.

The behavior is defined by rules, which is defined as a set or a sequence of events that

describes the behavior of an intrusion [10].

Data-mining can automate the analysis and extract relevant features used for

the detection algorithm. The methods developed over the years include classification,

clustering, outlier detection and rule based discovery. Data-mining and anomaly

detection based methods in general suffers from high false alarm rates. A method

used in the past for anomaly detection was using the host’s sequences of system calls

and modeling the processes and valid system calls they generated [23]. A database of

normal-sequences is stored and a sliding time window is used to capture and partition

16

the data within a frame. The frame that contains the captured sequence of system calls

is then compared to the database with the previously established system calls [23].

Limited products are available in the commercial market that implements anomaly

detection methods. An IDS using anomaly detection produces a large number of false

positives the network security administrator are left with the frustrating task of filter

through false positive indications [10]. The real threat are not the vulnerabilities that

are found and has the signatures to detect them but the threats that are unseen or the

vulnerabilities that are unknown to anyone but the attackers. The signature based

systems were really intended for the “script kiddies”, unskilled attackers that rely on

known attack tools that usually have signatures [26].

According to Zanero et al [26], anomalous based IDS have been implemented

on a purely host based system but have failed when the methodology was used on a

network based system with a few exceptions. Zanero claims the reason was because the

tendency to produce large volumes of false positives. The outputs to these system does

not give any indication on what is wrong but gives a statistical number usually called

an anomaly score based on weirdness. One can gather all this data but understanding

the set of data that should be monitored is something that researchers have struggled

with. Understanding how to describe network flow and model it in an IDS is extremely

difficult because of the added constraint to have close to zero false-positive indications

[26].

Coal et al. proposed a novel approach detecting masquerading intrusions at-

tacks. Masquerading is a method where an attacker assumes the identity of a legiti-

mate user in a computer system. The detection relies on the signature of a legitimate

user which is the sequence of commands it usually initiates. The assumptions made is

that a signature captures detectable patterns in a user’s sequence of commands. The

a measure of differences between a legitimate user and an attack can be made. Coal’s

new algorithm uses pair-wise sequences alignment to characterize similarity between

sequences of commands.

17

Masquerade detection falls under the anomaly based IDS approach but using

traditionally anomaly based approach falls short in the detection of masquerading

attacks because the anomaly based approach assumes the user is a legitimate user.

It cannot differentiate the differences between them because the behavior patterns is

usually the same in terms of valid access requirements.

2.4.2 Statistical and Machine Learning Techniques For Intrusion Detection.

2.4.2.1 Cluster analysis. Similarities based on some metric are grouped

together and then labeled based on the clusters characteristics. This metric must be

chosen carefully as to have correlation of the features and the problem domain. The

clusters are usually user defined with knowledge of the solution space giving the al-

gorithm the amount of clusters and the distance criteria each data point must meet

to be associated with a cluster.

Clustering has the property to detect outliers of the the data. Outlier detection

is an unsupervised learning technique identifying unusual or strange behavior based

on every observations. Clustering has the ability to generalize the data. This is

useful to counter the polymorphic behavior of hackers and should be able to resist to

polymorphic attacks. Clustering can be used on unlabeled data and very powerful in

the fact that no priori knowledge is needed for the detection algorithm. Clustering is

also adaptive that it can be adjusted or tuned depending on the environment it must

work in, that will help reduce the number of false positives.

Zanero et al. [26], proposed a two tier network method to detect anomalies in

the flow of the packets on a TCP/IP network. The first tier is where the unsupervised

clustering algorithm classifies the payload of the packets, observing and classifying one

packet at a time. The system then compresses the information to a single byte. This

byte of information is added to the header information of the packet. The second

tier then has the packet information and the packet header information to work with.

18

The second tier process the anomalies seen in the individual packets but also the

anomalies seen as a result of the sequence of packets.

The clustering algorithm Zanero used in [26] was k-means clustering, the prin-

cipal direction partitioning, and Self Organizing Maps. The new process was tested

on the DARPA IDS evaluation 1998 data set. This data set was criticized by many

researchers because the data set does not represent realistic network traffic, but was

still used as a test the concept of an IDS with a two architecture system. The met-

ric used to measure distances among vectors of data is a simple Euclidean distance

function. The proposed architecture has two purposes, intra-packet correlation and

inter-packet correlation. The inter-packet is used to detect anomalies in individual

packets and the intra-packet is to detect anomalies over a time window that repre-

sents distribution of activity and the interactions among sequences of packets. The

time window concept of observing past packets was used to model history or mem-

ory. Having memory of past packets can increase the ability to detect attacks such

as a DOS where checking individual packets would not catch such attack. According

Zanero, clustering algorithm could be used for detecting time sequence anomalies by

applying them to a rolling window of packets.

Current signature based methods and learning algorithms which rely on labeled

data to train, generally cannot detect new intrusions. Portnoy et al [27]. proposed

a clustering-based intrusion detection algorithm, which trains the system using unla-

beled data. The system would automatically scan the network environment, detect

attacks and inform the system administrator to take corrective action. Misuse retrain-

ing of a rule base system is done by inserting many labeled instances of new attacks

into the data set, and the rule finding algorithm would adjust its rule database ac-

cordingly.

According to Protnoy et al. [27], traditional anomaly detection algorithm require

the set of the training data to be free of attacks and should be “purely normal data.”

The training data if tainted would influence the detection algorithm and not detect

19

future instance attacks because the system would label similar observed instances as

normal. In an ideal world this solution would work as a training set that the system

would learn from but getting such a data set is almost impossible to obtain, either

labeled data or purely normal data. Most likely of sceneries is that the training set

obtained are raw large volumes with intrusion embedded in the system and unlabeled.

Protnoy proposes a detection algorithm that is unsupervised taking in as inputs the

unlabeled data and from that data attempts to find the intrusions embedded within

the data. The intrusions found is then fed to train the detection algorithm. The

method used was a clustering algorithm that uses a simple distance based metric.

After the clustering of the data the small clusters are labeled as anomalies. The

assumption Portnoy has made is that anomalies are rare and therefore would either

show up as outliers or within small clusters of the clustering algorithm. Portnoy’s

detection algorithm first trains the system by finding the clusters of the raw data.

The set of clusters of the data is initialized to be empty then for each pass, the data

instances are assigned to the closest clusters based on distances for each centroid. The

detection phase is to convert an observed instance based on the statistical information

of the training set from which the clusters were created. The observed instance is

labeled based on the closest cluster set during the training phase.

k-means clustering is one of the more popular methods of clustering data in

the field of machine learning and statistics [27]. The algorithm makes passes through

the training data and adjusts the cluster’s center to the mean of the data points

assigned to the each cluster. It will make several passes through the training set until

the centers of the clusters stabilizes. This method is computational expensive and is

usually used off-line when training the system.

2.4.2.2 SOM. According to Wang [28], SOMs is a method used for

visualizing data of high dimensionality. This is a clustering algorithm that uses artifi-

cial neural networks, the number of clusters is not provided by a user but derived by

the algorithm. A SOM consists of nodes and neurons and with each node containing

20

a weight vector and has the same dimension as the input vector also has the position

in the lattice map. The SOM is therefore a mapping from a higher dimensional input

space to a lower dimensional map space.

2.4.2.3 SVM. According to Shon and Moon the Support Vector Ma-

chine (SVM) has proved to be one of the best machine learning algorithms to classify

anomalies [4]. Shon and Moon proposed a new SVM approach basically taking the

sort-margin SVM and the one class SVM and combining them together to take the

advantages of each and eliminates some of the weakness of methods if used alone.

They call this new approach Enhanced SVM. The first step to the process is using

Self-Organized Feature Map (SOFM) to create a profile of normal packets. They

then used a packet filtering scheme based on Passive TCP/IP Fingerprinting (PTF)

to reject incomplete network traffic. A Genetic Algorithm (GA) is used for extracting

the optimized information from the raw internet packets. Lastly they used the flow

of packets based on temporal relationships during data preprocessing. The overall

frame work is shown in figure 4.

Figure 2.4: Shon and Moon Enhanced SVM approach to an IDS [4]

The SOFM step of Shon and Moon’s proposed process is to normalize and

obtain normal data for the training of the system. The normal data is essential

for the training of a supervised system but also provides intelligent criterion to the

21

unsupervised learning of the system. In Shon and Moon’s method, packets for normal

learning is needed as a measure of the correct learning have normal characteristics.

SOFM aim is to create clusters and distinguish them from with normal features.

SOFM is implemented as an unsupervised neural network and converts non-linear

statical relationships between data points in high-dimensional space into relationships

in a two-dimensional map. SOFM clusters are made in accordance with the attributes

of packets.

The TCP/IP fingerprinting purpose is to confirm the structure of the received

packets. It discards any packets that is not recognized as a common constructed

packet. The fingerprinting uses heuristics and is expected to identify normal systems

if fingerprints of the systems are submitted. This does not filter packets with malicious

payload but identifies that the packet if on normal construction and not malform.

Moon and Shon used a genetic algorithm (GA) technique for feature selection.

The method and the fitness function used is described in [29]. GA is a well known

method for finding solutions for optimization problems. GA uses three operators to

produce the next generation from the current state of reproduction, crossover, and

mutation. Shon and Moon first transform packets into binary gene strings. The initial

population consists of a set of randomly generated 24-bit strings, with 13 bits for IP

fields and 11 bits for TCP fields.

Two methods of SVM can be used for machine learning, the supervised approach

also called Soft Margin SVM or the unsupervised approach also called One-class

SVM [4]. The supervised approach has a purpose to decrease misclassified data.

A slack variable is used to decrease misclassification. A single class learning for

classifying outliers can be used with the unsupervised approach.

The unsupervised version of the SVM algorithm identifies outliers among the

normal class then use these outliers to define the anomaly class. The algorithm

maps the data in a feature space H using an appropriate kernel function, and then

22

attempts to find the hyper-plane that separates the mapped vectors from the origin

with maximum margin.

Shon and Moon make the assumption similar to past research that anomalous

activity is small compared to the normal traffic in any training or real world data.

The Enhanced SVM approach proposed by Shon and Moon is a method that has the

capability of one-class SVM through modifying the soft margin SVM. The complete

details of the enhanced SVM could be found in [29]. The data processing step is to

take into account temporal event sequences. According to Shon and Moon picking

out relationships among the sequences of network packets the knowledge would deeply

influence the performance of the learning. To capture this a sliding window concept

was used.

2.4.2.4 Bayesian Networks. Bayesian networks are graphs that repre-

sents transition rules and their probabilistic interdependencies [3]. The nodes repre-

sents the state of random variables with the conditional probability table that deter-

mine state given the state of the parents.

2.4.2.5 State Transition Table. A state transition table is a table of

sequence of behaviors or actions an intruder does [3]. The detection of an intruder is

a matching of these sequences of actions to observed sequences of actions.

2.4.2.6 Artificial Neural Networks (ANN). Artificial Neural Networks

(ANN) is a system that is trained to recognize patterns from input data and associate

the input pattern to an outcome [3].

2.4.2.7 Genetic Algorithm (GA). Genetic Algorithm (GA) is search

algorithm that can search for solutions in a large search space. The mechanism of

the search is modeled after natural reproduction system in nature. The fittest of

characteristics survives upon generations after random changes of reproduction is

placed. In IDSs GSs involved evolving signatures on intrusions [3].

23

Intrusion detection methods should be robust, adaptive and efficient. Hansen

et al, suggests that genetic programming would give you this. Genetic programming

is a subset of the famous and well known GA. Hansen and his group worked on a new

method using machine-coded linear genomes and a homologous crossover operator.

2.4.2.8 Artificial Immune System . Artificial immune systems are

systems that mimic the biology of the human immune system to attack foreign objects

within itself. The system have agents like white blood cells of the human body and

will detect and attack foreign objects. In a computer system it neutralized potential

intruders by identifying if that foreign object is self or non-self item and then take

actions to neutralize or eliminate the non-self object.

2.4.3 Network based intrusion detection systems (NIDS). The most popular

IDS systems are in the form of NIDS. The majority of the commercial market uses

NIDS technology and methods. [10] IDSs are classified into network based or host

based and differ in the data they analyze. A network based IDS analyzes network

traffic. It looks at network packet data to detect the evidence of intrusion. Host based

IDS analyzes internal information and find intrusion evidence in operating system such

as logs. [9]

There are many advantages to NIDS, one is the ability to monitor more than

one machine where HIDS has to be individual installed on every machine it protects

on the network. NIDS protects the network it is monitoring and does not need

to be installed on any running existing system. The system can be external with

minimal down time to the network with respect deployment and installation [10]

Some of the disadvantages of NIDS are there is no guarantee that all the packets of

the network traffic is captured by the NIDS and can possibly miss attacks. NIDS

uses network traffic such as network packets either header information, payload data

or both. Another disadvantage is if the network is using encryption, the IDS will be

ineffective because NIDS cannot decrypted the data at the network level. [10]

24

The speed and the amount of data in today’s network environment makes cap-

turing 100% of the incoming packets unfeasible. In [30], Sperotto et al. presents a

different approach of NIDS. Monitoring the “Flow” of a network and not the indi-

vidual packet payload. There are measurement systems that can monitor and give

information of the flow of the network some of them are Netflow and IPFIX [30].

These tools can be used as a compliment system to the NIDS. Sperrotto’s model

is a combination of both ideas of network monitoring and data payload monitoring.

The model has two processes with the first monitoring packet payload and the sec-

ond monitoring of the network flow. The model is defined as a two step method

with the first step extracting information form packets and network traffic to create

a data structure called a “flow.” In IPFIX a flow is in the form of, (source address,

destination address, source port, destination port, and protocol). The second step is

collecting the flows created to be used by another process to analyze the “flows.”

A subset of NIDs that detects collaborative attacks and intrusions is described

in [31]. These systems called collaborative intrusion detection systems (CIDS) relay

on multiple data sources instead of single node on the network or a single target host

computer. Systems like CIDS have the potential of detecting coordinated attacks

such as, stealthy scans, worms, and distributed denial-of-service (DDoS) attack that

would make regular isolated NIDS unable to detect these types of attack because of

the single source of data or a portion of the internet being observed. Stealthy scans,

worms and DDos are the predominant collaborative attacks used today [31]. The

stealthy scan is a reconnaissance type of attack that will look for targets to attack

and use the vulnerabilities found in the stealthy scan to control the target computer.

Zanero et. al [26] proposes a two tier architecture to overcome the problem of

computational workload, using data mining techniques on network traffic data. The

first tier is an unsupervised clustering algorithm that reduces the network packets

payload to a tractable size. The second tier is the anomaly detection algorithm. The

first tier function is to reduced the packets payload to a tractable size so the detection

algorithms has the packets payload data to be used in its detection algorithm. The

25

two tier architecture has made it possible for the detection algorithm to use payload

data where traditional network intrusion detection system would discard payload data

and would analyze only packet header information.

Collecting intrusion data is difficult because of the scarce nature of the data.

What Yeung and Chow proposed to overcome the lack of intrusive data for training

is to take a nonparametric density estimation approach based on the Parzen-window

estimators with Gaussian kernels to build and intrusion detection using only normal

data [32]. Essentially the intrusion detection problem could be simplified to a data

mining approach by “mining” through data either host or network to detect possible

attack from intruders

What Yueng and Chow used in their method was to use density estimation which

assumes a probabilistic generative model for the observed data. Density estimation is

the process of estimating the underly density function for the gathered training data.

This model is then used to detect novel attacks. The density function using parametric

density estimation was to restrictive so they decided to use a non-parametric method

for the estimation more specifically the Parzen-Window Density Estimation.

To test their novelty detection using the Parzen-window estimation they used

hypothesis testing. If ω0 represents anomaly and ω1 represents normal behavior of

the system then their prior probabilities are denoted as P (ω0) and P (ω1) with the

probability density functions noted as p(x|ω0) and p(x|ω1). Using Bayes theorem

x ∈ ω1 if p(x|ω1) > p(x|ω0)(P (ω0)/P (ω1)). The difficulty of this approach is that if

is very difficult to model the distribution of anomalous events. A solution they came

up with is to use hypothesis testing. Given an unknown case x from the dataset, the

goal is to decide if x ∈ ω1 the anomalous set. The disadvantage is the construction

of the model has a high computational demand. According to the Young and Chow

the method has characteristics similar to K-nearest-neighbor classifier with similar

results.

26

Li and Guo [33] proposes a novel supervised network intrusion detection method

based on TCM-KNN (Transductive Confidence Machine for K-Nearest Neighbor) ma-

chine learning algorithm. There are two major ideas to the method Li and Guo has

proposed one is that they used what they call active learning where the system would

select much fewer good quality data for the training instead of just blindly and ran-

domly picking data for training. The second is the use of feature selection to reduce

computation and speeding up the classification step. Using the p− value, the proba-

bility of observing a point in the sample space that can be considered more extreme

than a sample of data. It is a measure of how well the data supports the null hy-

pothesis basically the point belongs to a particular class. The smaller the value the

greater the chance the point of data is an outlier. The tranductive test in Li and Guo’s

method is also known the strangeness measure and corresponds to the uncertainty of

the data point. The details of the approach could be found in [33]

The principle idea of this method is training the system with the labeled data

provided them a systematically selecting unlabeled data to classify. The new unla-

beled data is then used to help with the training of the system and is part of the

labeled training data in the future.

2.4.4 Host based intrusion detection systems (HIDS). HIDS is a class of

IDS that uses information gathered by the host operating system. The operating

system is considered a trusted entity and the data extracted is used to detect the

evidence of intrusion. Vigna describes two layers where HIDS could be implemented,

the operating system-level and the application level. [9] An advantage of host based

intrusion detection system is the visibility of application interactions between users

and applications or between applications. With encrypted communication an NIDS

monitoring network traffic using signature or anomaly detection would be ineffective

because the data captured would be unreadable. HIDS running on the host will see

the data un-encrypted, the data in the application level will decrypted the data so

the host application can use the information.

27

HIDS has the ability to monitor the host in the application level where the data

stream is un-encrypted. Some of the disadvantages of HIDS is the scalability of the

system. HIDS requires to be installed on every target computer in the organizations

network for the whole network to be protected. If the hardware is different then the

HIDS is individually configured with respect to the individual hardware, software and

type of user [10]. An HIDS can be a targeted for an attack. Usually HIDS is a piece of

software running on the host and can be tampered with if an intruder penetrated the

system before any type of detection [10]. An HIDS can starve other processes running

on the computer if the HIDS has a heavy computational load therefor influencing the

performance of the whole system [10]. The activities that are monitored using a HIDS

are CPU information, network connections and process [23].

A promising area in HIDS is monitoring the system calls of the host. Tan-

don et al. proposes a method for intrusion detection using system calls [14]. The

method uses sequences of system calls as well as their arguments. The addition of

system call arguments for IDS analysis in combination with sequences of system calls

minimizes attack using methods that evade IDS technology. Mimicry attacks are in-

trusion methods where inserting dummy system calls with invalid arguments form a

legitimate sequence of system calls making the attack undetected [14]. The method

Tandon et al. describes is using a fixed length sliding window of the sequence for the

system calls [14]. A threshold is limit or the amount of anomalous activity the system

cannot exceed. An anomalous activity is defined as deviations from a sequence of

events describing normal sequences within the given time window. This time window

slides across the length of recorded time looking for anomalous activity [14].

A host running a HIDS is vulnerable to attacks where the target of the attack is

the HIDS application. An attacker can penetrate the system, disable the HIDS before

being detected. This leads to methods being developed for protecting the HIDS from

attack. Laureano et al. introduces a model that implements HIDS using a virtual

machine that shields the HIDS from attack [5]. Virtual machines can sand box its

operations making the host operating system unaffected with the malicious activity

28

inside the virtual machine. The proposed architecture utilizes the separation virtual

machine provides the execution of processes. The advantage of this architecture is the

sensor monitoring for attacks is invisible to the attacker. The idea of separability of

process execution in one machine adds a secondary but equally important aspect of a

virtual machine and that is monitoring malicious activity without being affected. The

observations could be used as a learning mechanism learning the behavioral activity

of real malicious activity in the wild [5].

Figure 2.5: Laureano, et al. Model for protecting HIDS sensors using virtual ma-
chines [5].

In figure 2.6, the outside traffic does not reach the host operating system and

all incoming traffic is funneled to the guest operating system or virtual machine. The

functions of the HIDS is located outside the guest system and out of reach from

intruders with intent to tamper the IDS. The data stream flowing out of the virtual

machine has the activity data from the guest operating system. The collected data

is compared to previously learned model from the past where model characterizes

past attacks and therefore could find intrusions in the guest operating system [5].

Laureano implements this IDS using virtual machine with a knowledge base using

misuse detection. The primary goal was not to create a new method of HIDS but

29

encapsulate the HIDS itself and protect it from attack. The author also proposed

a method of detecting invalid sequences of system call with a certain size of length

k and integrity checking the ACL (access control list) from a past ACL. The model

has two operating modes: a learning and a monitoring mode [5]. The learning mode

learns the normal behavior of the system in terms of sequences of system calls and

ACL. The monitoring phase monitors and compares current virtual machine behavior

profiles from the knowledge base of system call sequence and ACL.

Malan et al. [6] proposed HIDS implementation for worms on a network. The

solution the author explains in [6] is a collaborative solution where every machine on

the network works together to find similarities that would indicate a worm. As shown

in figure 2.7 each machine is connected to a processing computer node that collects

behavioral snapshots of computers on the network. Depending on the size of the

network there might be multiple processing computers interconnected together. The

author argues that because it is very unlikely similar behavior are observed across the

whole network unless the network has been infected by a worm. The fast spread of

a worm is a characteristic of similar behavior across the network and implies that a

worm is spreading on the network. The snapshots from machines is sent to a snapshot

server. The snapshots are behavior patterns of system calls executed in a given time

window [6]. Malan’s definition of a behavior of a system is a sequence of system calls

and from that he defines an anomaly as a high correlation between behavior across

the network.

Figure 2.6: Malan et, al. Model HIDS for detection of worms [6].

30

Large amount of false positives alerts has lead researchers developing methods

to reduce them. Finding that perfect model of normal behavior has lead to data

reduction techniques were redundant data can hurt the models accuracy. Another

approach is to eliminate redundant alerts. A method Feng et al. [7] introduces is a

fusion of alerts to reduce the redundant alerts the system outputs. Feng implements

this model using a Subject-Verb-Object (SVO) structure with alert fusion and alert

verification modules. The system has many alerts outputs from different components

of the SVO system and the alert fusion module will fuse alerts that are identical and

verify output alerts are legitimate positive alert. The proposed model is shown in

figure 2.8.

Figure 2.7: Feng, et al. HIDS model with alert fusion [7].

The inputs to this model is an event and then a three layer individual process

analyzes that event. The Subject Monitor analyzes the subject of the event also

referred to the originator of the action, the Verb Monitor analyzes the verb of the

event defined as the action the subject initiated and the Object Monitor analyzes the

object denoted as some entity involved in the subject’s action. The first layer is the

Subject layer if the Subject Monitor finds no subject defined anomalous activity then

the event is forwarded to the Verb Monitor if no verb defined anomalous activity the

event is forwarded to the Object Monitor and if no object defined anomalous activity

then the event is not anomalous. At any point in the three monitor modules finds

31

anomalous activity then an alarm is sent to the Alarm Fusion module. The purpose

of the Alarm Fusion module is to eliminate alarms. If the Subject sends an alarm

to the Alarm Fusion module and the Verb Monitor sends the same alarm the Alarm

Fusion module, it combines the two alarms if it finds those alarm identical.

In [23], Hoang et al. implemented a hybrid anomaly IDS using features from

system calls of programs. Hoag combined two methods, one using a hidden Markov

model (HMM) and the other a using a database of valid system call sequences. The

output of the two detection schemes was then fed into a fuzzy-based logic rule based

system used to infer a boundary between anomalous and and normal behavior. The

training process proposed by Hoang, is to divide the a single observation O into K

sub-sequences.

The fuzzy-based detection schemes consists of two stages, the training stage and

the testing stage. The training stage is where the the database of the sequence of

system calls and the HMM model is built. What the database contains is the list of

all short sequence of system calls found in the training data. Each sequence is of size

k system calls long with the frequency also provided by this database. The HMM

is trained in the training method discussed above based on the incremental training

scheme [23], with the fuzzy rules defined in the training step as well. In the testing

phase a sliding window method is used to extract the sequences of system calls called

a short sequence. The short sequence is fed into the HMM model and the database of

allowable short sequence system calls. The output is used to compute the parameters

of the fuzzy inference system. The fuzzy system classifies the observed data based on

the outputs of the HMM [23]. Hoang, manually devised 17 fuzzy rules for the sequence

classification. An example on of the rule is: “IF probability IS Low AND distance

IS Zero AND frequency IS Low THEN the test sequence IS abnormal.” where the

data being fed into the fuzzy rule sets are {probability, distance, frequency, and short

sequence of system calls}.

32

A subset of host based IDS is application based IDS where the collection of

application data is collected from individual applications running on the host. The

usual mechanism of data collection of application information is within the application

logs the operating system provides. [10] This method has great potential in detecting

insider threat attacks, where an authorized user with suspicious activity will set an

alarm by the IDS if the authorized user somehow raised it’s access in the system.

This type of information is available because of the monitoring in the application

layer where dependencies are mapped from application, process and users. Some of

the advantages of application based IDS are the clear mapping of interactions between

users and applications. The ability to correlate and match the unauthorized activity

to the user makes this intrusion detection method very powerful, it goes beyond just

setting an alarm when an intrusion has occurred. If the network traffic is encrypted

an application based IDS would still be effective because the data is gathered at the

application layer. The data is usually decrypted at this point so the application could

use the data. [10] The drawbacks is it has the same vulnerabilities of HIDS [10].

Unlike the audit trails the operating system provides the information the application

generates is not as protected. The audit-trails and logs are usually trusted entities

because the information comes from kernel level but the information in application

based IDS is generated from user level and can easily modified.

2.5 Flow-Based Features

Moore et. al [34] developed a feature set for use in flow-based network classifi-

cation where a flow is defined as one or more packets traveling between two computer.

He provided the features to characterize network flows using statistical information

about packet length, inter-packet timing, and TCP information. The packet statistics

used deal with packets and packet headers calculating simple statistics of the features

of the minimum, quartiles, mean, variance, maximum and the fast Fourier transform

of the data. This thesis was to take this approach of net workflows and apply these

33

simple statistics and characterize processes in memory. The statistical feature set is

described in chapter 3.

2.5.1 Network Based Flow-Based Features. A method described in Duffield’s

et al. [35] paper is a packet classification method that uses rule based for identifying

traffic anomalies. Duffield’s paper explored the use of correlations between packet and

flow level information. The payload information is ignored and the classification of

anomalous activity is entirely based on network flow. The goal of Duffield’s approach

is to detect network attack traffic. A tool like Snort can run on any general purpose

computer with rules created by the user or from a community source that can be

downloaded. In an ideal world with infinite storage and infinite computation with

no possibility of over working the system an IDS should look at every single packet

payload and header but because there are resource and computational limitations this

method would be impractical. Duffield’s plan was to use signature based system on

network flow data unlike what Snort that looks at signatures individual packets either

header or payload information. Duffield’s states that “Flow statistics are compact and

collected ubiquitously with most ISP’s networks.”

Duffield constructed rules at the flow level that reproduce the action rules at the

packet-level rules. A machine learning algorithm was used to detect unwanted traffic

using flow signatures. Duffield’s proposed method is different from the traditional

unsupervised learning methods such as Baysian networks, PCA and clustering in the

fact that rather than alarming unknown unusual events based on deviation from the

normal behavior model. Duffield uses the set of events alerted by packet rules as

representing the most complete available knowledge. This learned knowledge is then

used as the input into the machine learning algorithm to reproduce the alerts at the

flow level.

Duffield separates predicates representing the different data sources and combine

them using logical AND and OR operations. The different predicates are the flow-

header, packet-payload, and meta-information.

34

2.6 Summary

This chapter has presented the background information for machine learning,

and IDS. The problem for detecting malicious activity using signature or anomaly

based techniques. Chapter 3 builds on work from past research for detecting anoma-

lous behavior using flow based features of network data and applying it to flows of

processes. A new set of features for host based anomaly detection is presented. Fi-

nally, Chapter 3 also provides the method for clustering process flows for use in the

identification of anomalous processes.

35

III. Methodology

This chapter describes the research methodology to evaluate the novel use of host

based process flow feature clustering to detect malicious processes using VMI. The

system is categorized as Host-Based detection with the data of interest as memory

features. CMAT provides the VMI sensor, capable of live memory captures of a

system. It works by capturing the host OS memory while operating in a hyper visor

environment, producing 5 feature files approximately every 30 seconds and 1 file that

relates to registry information every 30 minutes.

The output files of CMAT are preprocessed using a sliding window to extract

features across the life of all processes between a start time (tstart) and an end time

(tend). These windows of observations of processes are the features used to cluster

and identify groups that represents process type. These groups are used to identify

new flows for possible membership to one or more of the groups in the decision space.

This chapter details the data collection process, which is followed by a de-

scription of how the collected data was injected into a database. Using the models

developed from the clustering algorithm we systematically test the models using la-

beled data captured from normal scenarios with several different types of applications

running. The goal is to determine if new instances of process flows are correctly iden-

tified by the clusters. These groups are the knowledge developed from the computer

domain that give labels to the types of applications associated as members.

3.1 Problem Definition

Memory is volatile and provides the most accurate snapshot of the computer

state at a moment in time [36]. A program runs in memory, and a sensor like CMAT

makes it possible to observe the connection the process has to other system resources.

The resource of interest include process ID number, application name, username,

local ports, remote ports, dynamic link libraries, permissions, file handles, registry

and system drivers information. The feature files CMAT generates may be used to

correlate anomalous processes. The problem with using the raw feature files to find

36

connections to anomalous activity is that the amount of data is too large to manually

analyze for any correlation to malicious processes. The evidence of intrusions or

malicious activity are assumed to be hidden within the CMAT raw feature files. A

computer administrator just has to find it. Correlating data from the raw feature files

to malicious processes is difficult to do in a timely manner. A transformation to the

raw files is made for a better understanding of the types of processes and its behavior.

An abstraction to features of processes called flows are made. These flows are

grouped together providing a label that describes the application group by type or

behavior. A relationship is made to individual processes to its behavior based on

membership. Grouping similar processes together provides the means for finding

potential threats. New unseen flows are labeled based on nearest group using the

Euclidian distance measure. An anomalous flow is an instance outside a threshold of

the given group. For example, a “calc.exe” should be nearest to the group of graphical

user interface(GUI) only processes that has ‘calc.exe’ as part of its membership list.

If a process flow identifies itself as “calc.exe” and is outside this group’s threshold,

that particular flow is identified as anomalous. The hypothesis for this research is

that the discovery of groupings of processes executing in memory can be identified.

3.1.1 Research Goals. In the field a computer forensics, incident response is

the preliminary stage of an investigation where the goal is to gather as much data to

determine whether or not an unlawful, unauthorized activity has occurred. Forensic

response is used by law enforcement to investigate crimes where a computer is part

of the crime scene, or is searched for possible evidence. The primary goal for this

research is to leverage the host features the computer forensic community uses in

their initial response investigation and monitor those features gathering statistical

information and possibly detect anomalous activity.

In [34], a set of features was described to the public for use in research in the

field of classifying real network data. Moore [34], defines a network flow as flows of

network packets from a source to a destination. Statical features are calculated with

37

respect to packet communication. The features could be found in [34], and contain

simple statistics such as mean, quartile, median, minimum, maximum, variance and

also the discrete fast fourier transform of packet frequencies. This research combines

host features used in computers forensics to calculate simple statistics similar to the

network flow implementation. Instead of statistics of network packets this research

uses statistics of processes. The features are calculated from a sensor that monitors

processes information in memory. A host based process flow is defined the change in

processes flow features over the change in time.

The processes flows are clustered together to be used for association of new flows

to these predefined clusters. This research identifies the amount of clusters needed to

accurately model application types the window of observations that best describes a

processes flow. The goal is to determine if a Host-Based Anomaly detection method

may be developed using statistical running processes information from memory anal-

ysis. The Host-Based Anomaly detection method classifies the dynamic behavior of

a process called a “flow” into their application types. An anomalous process is char-

acterized as a processes outside the threshold of its group. A learning step is used to

train and these grouping and determine a threshold value. Labeled data was used to

generate the models and verify if anomalous events are identified.

3.1.2 Expected Outcome. After this proof-of-concept method to detect

anomalous processes is developed and tested, an organization could possibly inte-

grate this system in a virtual machine environment. The current CMAT software can

capture live memory only via a virtual machine interface but CMAT software could be

updated to run and capture memory from the host machine. Detection of anomalous

processes could be used to safeguard against attackers and malicious software.

3.1.3 Assumptions. The fundamental assumptions made in this research

are computers are running on a virtual environment and the CMAT sensor is running

on the host OS capturing live memory. An anomalous process is a processes with

statistical characteristics outside what is defined as normal and in this case its the

38

distribution of “flows” and its respected classification. The classification is the appli-

cation type of a process. Past research [20] [21], used incident response toolkit tools

for the host sensors.

3.2 Research Approach

Li et al., [37] researched using network-traffic features for classification of network-

based application using statistical behavioral of network flow and Deep-Packet Inspec-

tion. Li et al., [37] classified application types based on network features. The dy-

namic process behavior called “flows” are the data points the classifier uses to classify

the associated application that is correlated to the process. This research examines

applying the idea of flow features to host process data calculate dynamic statistics of

processes in memory and determine if a classification model could be developed. By

accurately classifying application types, process flows could further be used to detect

anomalous behavior and indicate the presence of malicious software or an attacker in

the system.

3.3 Host Based Process Flow Features

CMAT provides one tool to capture all the feature needed for this proposed

method for detection of anomalous processes flows. The features of interest are the

features used in the field of digital forensic for situational awareness. Past research

used several tools, combining all output from the tools and feeding it into their pro-

posed detection method. The incident response tools utilizes trusted files that execute

from a CD-ROM or DVD. GUI driven tools may interact with the machine and affect

evidence collection and therefore should utilize command-line tools. Incident response

tools may is used as a snap shot sensor to give the state of the machine at a point in

time. The outputs of these snap shot sensors are fed into an IDS to detect anomalous

activity. A transformation from unusable data with too much detail for any situ-

ational awareness understanding to instances of data elements used for correlating

anomalous events. CMAT raw files are collected and features are calculated for each

39

process for a given time window. The following section describes the features being

extracted in a computer system, the snapshot sensor that is capable of capturing the

features and CMAT’s capability of capturing the equivalent features of the snapshot

sensor.

Instead of using tools that run on the same level the system it was intended

protect, this research took the approach of taking the sensor and placing it outside

of the operating system. The environment is therefore a virtual machine with the

sensor running on the host operating system capturing features on the guest operating

system. CMAT provides this capability and the features it provides are process IDs,

application names, DLLs, mapped address spaces and registry key information. The

assumption here is that CMAT can provide most of snap shot sensor capabilities so

CMAT can be used as the sole host sensor to an IDS. The benefit from CMAT to the

other sensor tools described above is the security it can provide because it executes

outside of the operating system making it harder get compromised or detected by

intruders.

3.3.1 Compiled Memory Analysis Tool (CMAT). The Compiled Memory

Analysis Tool(CMAT) is a forensic analysis tool that extracts features from memory

for situational awareness. The softwares can work in two environments:

1. Host O/S: Windows 7 64 bit O/S Memory Dumps: Windows 7 64 bit, Windows

7 32 bit, Windows Vista 64 bit, Windows Vista 32 bit, Windows Server 03 64

bit, Windows Server 03 32 bit, Windows XP 64 bit, Windows XP 32 bit

2. Host O/S: CentOS 32 bit O/S Hypervisor: Xen Guest O/S: Windows 7 32 bit,

Windows XP 32 bit Guest O/S accessed via XenAccess

The data collected from memory by CMAT are processes and their associated

features. CMAT provides one tool as a sensor to processes of the system where past

research [21] [20] relied on several smaller software tools to gather the same features.

The following sections describe the software tools past research used in combinations

40

to extract features of processes. The tools would be running simultaneously extracting

the features. The assumptions here is CMAT features is easier to correlate processes

with their features. The other tools are separate programs that has no interactions

with each other. Past research had to work with several sensor and linking them in a

way to gather useful information.

3.3.1.1 Processes Overview. To capture processes information, PsList

can be used. This tool is part of the family of Windows SysInternal tools available

as a trouble shooting utility at the Microsoft TechNet website. The features this

tool provides are process ID, process name, user/kernal time, virtual memory sizes,

working set, private virtual memory, private virtual memory peak and page faults.

This tool can be configured to output the features to a text file at whatever frequency

desired.

3.3.1.2 Dynamic Link Libraries (DLL). Processes are usually associ-

ated with DLLs. ListDLLs.exe is another tool from the family of Windows SysInternal

tools. This tool provides the full path names of the loaded modules associated to their

processes.

3.3.1.3 Users and Session. A sensor that monitors logged on user

times and processes that are associated with a particular user is logonsession.exe.

This tool is also part of the family of Windows SysInternal tools.

3.3.1.4 Network Connections. A sensor that monitors network con-

nections is NetStat.exe also part of the family of Windows SysInternal tools. This

tool captures active TCP connections, ports their associated process IDs, network

statistics (IPv4 statistics and IPv6 statistics), and IP routing table information.

3.3.2 Data Preparation. The following subsections outlines the procedures

used to extract, parse and store the CMAT data for feature generation and save

the data into a comma separated file (CSV). The data contained in these CSV files

41

Table 3.1: The Database Tables Created from the CMAT Feature Files Output
Database Table Table Colums

Table 1 MachineID,CollectTime, PID, IPv6, LocalPort, RemotePort, Protocal
Table 2 MachineID, CollectTime, PID, BaseDLL, FullDLL
Table 3 MachineID, CollectTime, PID, Application Name, User
Table 4 MachineID, CollectTime, PID, Permissions
Table 5 MachineID, CollectTime, PID, Registry Key Value
Table 6 MachineID, CollectTime, Driver Name, Image Base

Table 3.2: Raw CMAT Output Files
FILE 1 FILE 2 FILE 3

Process ID Process ID Process ID
Process name Local IP Address/Port Base DLL Name

Username Remote IP Address/Port Full DLL Name
IPv6{Boolean}

FILE 4 FILE 5 FILE 6
Process ID Process ID Driver Name

Memory address of file Memory address of registry Memory address of driver
Permissions of Process ID HIVE/Cell name

were injected into a MySQL database and the database was used as an interface to

generate the process flow features at an instance of time t. The tables and their

columns generated from the CMAT output files are shown in Table 3.1. The 6 tables

were generated after the features from the CMAT files were parsed and injected into

these tables. The 6 tables were used to generate a process flow table that captures the

behavior of processes from a given instance of time. Querying the table that represents

the processes behavior at a given instance in time was then used to create processes

flow for each processes. This new table is the dynamic behavior of a processes from

an observed window of time.

The naming convention for the six files generated for each CMAT output twice

per minute for each file name the ‘xx’ is the first two characters the next 16 characters

is the time in a format of :{year,month,hour,minute,second}. It is followed by the file

number described above and the file type, a ‘.txt’ file. Each CMAT file that was

generated by a particular machine was grouped together into folders labeled with the

42

machine name that produced the files. Each host has a numbered folder with the

team name, for each folder are subfolders for each VM and their CMAT output files.

The features in the six text files are extracted and imported into a MySQL

database for preprocessing. A sliding window with overlapping observations of the

was imposed upon the data to map each instance of the observed window into feature

space where a clustering algorithm can learn and build a model of normal process

behavior.

To create the process flows then learning from the flows by using a clustering

algorithm is one of the goals of this research. Host based anomaly detection in the

past focused on audit logs as the basis of the data analysis to detect anomalous

behavior [13]. While network based anomaly detection focused on packet payload.

An alternative was a method that does not require packet payload information, but to

keep track of network flows of packets within a network. In theory this method would

have less of a computational burden because it does not require all packet payload

information to be captured and analyzed. What this research tries to accomplish is

to have a host based anomaly detection method that does not rely on audit logs for

feature extraction to track the host system state but instead to track each processes

behavior in memory. An alarm is set if an anomalous process is behaving abnormal.

3.3.3 Host-Based Process Flow Feature Generation. In a network, a flow is

described as network packet traffic information that describes the flow of traffic from

a source to a destination. The changes to these flows is one set of feature anomaly

based IDSs use to classify network as malicious or not.

Instead of using the flow of packets in a network this research focuses on the

flow of the processes internal features described above. The flows of each process in

memory are the features that are extracted for this research. The flows of a process

are the features with characterization statistics in a observed time window. Statistical

information is generated from the time window with respect to the processes because

43

Table 3.3: Process Flow Characteristics
PID #APPLICATIONS

#TCP #READ PERMISSIONS
#UDP #WRITE PERMISSIONS
#IPv6 #DELETE PERMISSIONS
#DLLS #NO PERMISSIONS

#USERS #REGISTRY KEYS
#DRIVERS

a time window gives multiple discrete observed instances of the same processes. One

could extract statistical information of the observed process in the given time window.

3.3.4 Process Flow and Features. A process flow is the dynamic characteris-

tics of a process from a single computer in an observation window from t0 to t1. The

features extracted from the 6 files in an instance of time t are described as the counts

of each feature associated with their PIDs.

Applying an observation window would give the dynamic behavior of a process

from a starting time t0 to an ending time t1. This observations are called process

flows. Extracting all the flows from the CMAT output files, then clustering these

process flows would result in a classifier that would give the generalized model of a

processes and its application characteristics. New unlabeled captured data is captured

and preprocessed to extract the process flows so a processes can be classified to the

nearest distance from a cluster. A process flow with an observation window t0 to t1

is described as the features and their characteristic statics of each feature.

A new table was generated where each row is a process flow that describes a PID

in a given time window. The 194 features are the columns in Table 3.4. Each discrete

process flow features at time t were put into a new table corresponding to one row in

that table. That new table was used to generate a process flow from a beginning time

t0 to an end time t1. For example if our discrete times in the process flow features ta-

ble are 1000, 1030, 1100, 1130, 1200, 1230, 1300, 1330 and our PIDs associated for the

discrete times are: {1,2,3},{3,5,4},{1,9},{1,4,9,113},{5,6},{2,4,6,7,},{0,7},{9} then in

the first row in in the process flow features table are features corresponding with PID

44

Table 3.4: An instance of Processes Flow and Features
Columns Feature Description
1 Windownumber = (1, 2, 3, ..., n (tbeginingWindow − tendwindow)
2 PID = The process IDs for each process observed
3 - 14 At T0 the observation counts for Ports, TCP, UDP, DLLs, Users, Applica-

tions, Read Permissions, Write Permissions, Delete Permissions, No Permis-
sions, Registry Keys and System Drivers.

15 - 26 At T1 the observation counts for Ports, TCP, UDP, DLLs, Users, Applica-
tions, Read Permissions, Write Permissions, Delete Permissions, No Permis-
sions, Registry Keys and System Drivers.

27 - 38 The total observation (a unique window number) of all counts from T0 to T1

of the following features: Ports, TCP, UDP, DLLs, Users, Applications, Read
Permissions, Write Permissions, Delete Permissions, No Permissions, Registry
Keys and System Drivers.

39 - 50 The maximum observed counts for the following features: Ports, TCP, UDP,
DLLs, Users, Applications, Read Permissions, Write Permissions, Delete Per-
missions, No Permissions, Registry Keys and System Drivers.

51 - 62 The minimum observed counts for the following features: Ports, TCP, UDP,
DLLs, Users, Applications, Read Permissions, Write Permissions, Delete Per-
missions, No Permissions, Registry Keys and System Drivers.

63 - 74 The average counts for Ports, TCP, UDP, DLLs, Users, Applications, Read
Permissions, Write Permissions, Delete Permissions, No Permissions, Registry
Keys and System Drivers in the time window

75 - 86 The number of counts for Ports, TCP, UDP, DLLs, Users, Applications, Read
Permissions, Write Permissions, Delete Permissions, No Permissions, Registry
Keys and System Drivers of the first quartile of the time window

87 - 98 The median count number for a given time window for Ports, TCP, UDP,
DLLs, Users, Applications, Read Permissions, Write Permissions, Delete Per-
missions, No Permissions, Registry Keys and System Drivers.

99 - 110 The number of counts for Ports, TCP, UDP, DLLs, Users, Applications, Read
Permissions, Write Permissions, Delete Permissions, No Permissions, Registry
Keys and System Drivers of the third quartile of the time window.

111 - 122 The variance in a time window of counts for Ports, TCP, UDP, DLLs, Users,
Applications, Read Permissions, Write Permissions, Delete Permissions, No
Permissions, Registry Keys and System Drivers.

123 - 134 The standard deviation in a time window of counts for Ports, TCP, UDP, DLLs,
Users, Applications, Read Permissions, Write Permissions, Delete Permissions,
No Permissions, Registry Keys and System Drivers.

135 - 194 The 5 highest values for each of the inputs of counts of the time window
for Ports, TCP, UDP, DLLs, Users, Applications, Read Permissions, Write
Permissions, Delete Permissions, No Permissions, Registry Keys and System
Drivers after the array of values is transform to another domain by the FFT
algorithm.

45

= 1 with time 1000 and every columns in that row are the counts of the PID char-

acteristics {TCP, UDP, IPv6, DLLS, USERS, APPLICATIONS, READ PERMIS-

SIONS, WRITE PERMISSIONS, DELETE PERMISSIONS, NO PERMISSIONS,

REGISTRY KEYS, DRIVERS}. The table was generated by inserting a row for every

PID and their discrete time windows with all the column features. A flow is then gen-

erated by extracting the statistical features of the processes and its given time window.

For example if the observed window is 4 then after all the features {TCP, UDP, IPv6,

DLLS, USERS, APPLICATIONS, READ PERMISSIONS, WRITE PERMISSIONS,

DELETE PERMISSIONS, NO PERMISSIONS, REGISTRY KEYS, DRIVERS} for

PID = 1 for all the discrete times were collected then the 190 flow features is gen-

erated for PID = 1 for times 1000 to 1130 and that represents one flow for PID =

1.

3.4 Clustering

The flows generated from the CMAT output text files were the samples used

in the clustering algorithm implemented in the Weka suite [38] of machine learning

software. Ideally the clusters group processes based on the similarities of behavior

with a definite distinctions between them. The behavior of these objects are the

features or attributes that statistically describing the object within an observed time

window. The clusters represents the application-centric grouping where an outlier

defined as an object associated within a clusters but is outside the threshold of the

standard deviation of the center of the cluster’s centroid. Finding the outliers can

be used as input into an anomaly based IDS where outliers are anomalous processes

that can be assumed as an intrusion. This research is primarily focused in classifying

processes into application centric groups using purely statistical features observed

in a time window bounded by a starting time tbeg to an end time tend. The model

generated could be used in future software development implementing a host based

anomaly IDS, setting an alarm when an anomalous process is detected.

46

Witten, et al. [39] describe clustering as a machine learning technique that divide

instances in natural groups. In this research the instances or objects used as input

into the clustering algorithm are the processes flows. Each flow would be divided into

natural groups. The natural groups are the applications these processes belong based

on the statistical behavior characterized within their features. Clustering outputs the

groups and the processes assigned to a particular group. The group can be defined as

the class where a similar processes with similar characteristics in terms of its feature

values would be assigned to in the future. The mechanism that attract an object to

other objects are the similarities of their statistical numerical fetuses to the clusters

mean feature values. As new objects are added to the cluster the mean values of the

cluster are adjusted accordingly. The algorithm iterates thorough the set of objects

until the change of the mean features of the clusters is minimal under the given

condition by the user.

k -means clustering is a well known clustering algorithm where the number of

clusters k is a number that comes from human knowledge and must then feed into the

machine learning algorithm. The problem domain must be something well known so

an appropriate k is chosen. The initial k clusters are then chosen usually at random

from among the training data objects. The algorithm iterates through all the objects

assigning each object to the closest clusters based on a similarity measurement. The

similarity measure used in this research is the Euclidian distance from the clusters

center to the object itself. According to Witten, et al. [39], a Euclidian distance

measurement is sufficient in clustering if the features are of numerical values. The

features are the dimensions of the objects and the cluster’s center is represented as

the mean of all the object within its cluster. The mean is adjusted after each iteration

through the entire data set of objects. The clustering algorithm ends after the mean of

all the clusters stabilizes. The criteria for stabilization is given usually by a threshold

for the change in delta values of the mean object of the clusters. This step in finding

the clusters is called the training step. Theses clusters developed from the training

step is used as a classifier for future observed data objects. For this research the object

47

used for clustering are the process flow. Pre-processing the CMAT data, extracting

the processes flows, and converting the flows into a CSV file as led to a file format

that a machine learning clustering program can use as input. Cluster the flows and

learn from the clusters is done by a program called Weka.

3.5 Similarity Measure

The measure of distance from one point x to another point y is the Euclidean

distance and defined as:

d = ||x− y|| =

√√√√(
n∑

i=1

(xi − yi)2).

3.6 Designator Analysis of Host-Based Process Flow Feature

The following subsections describe the process of the data collection, the ex-

tracted features using a time window to capture “flows”. Each feature, their signifi-

cance and the reason why the features were chosen for the attack classification model

is described.

3.6.1 Script Data, Controlled Experiments. The importance of a controlled

experiment is to control the applications running in the machine. A user controls

when an application runs and ends. Also, different applications can run at the same

time giving the control to the user on the amount of noise desired during the data

collect. Isolating a processes and correlating it with a behavior that correlates to

users task can only occur through a controlled experiment. The script used for the

controlled experiment is listed in Appendix A. The script includes 2 computers 7 4

and 7 5 both running Windows 7 OS.

3.6.1.1 Efficacy of Clusters on Individual Processes. After calculating

the process flows from the data collect of the CMAT feature files the next step is

to group the instances of flows together. k -means clustering is used to cluster the

48

instances of the flows. Cluster analysis is done to determine if the flows in a cluster are

all of the same type or it has the majority of the same application name. If a cluster

has flows of notepad.exe processes then that cluster is labeled as the notepad.exe

cluster and examined if the majority of all the notepad.exe is not spread out to many

clusters but is being assigned to this cluster.

3.6.1.2 Cluster Parameters. The parameters for the model includes

the number of clusters (k) needed to accurately characterize application types of the

collected raw feature files. There are two parameters that are unknown in the problem

domain. A set of tests conducted to determine the best values for these parameters.

Optimizing these parameters takes some domain knowledge of the data collect. A

query to return the number of distinct application names is done as an initial k for k -

means. That number is used as the amount of clusters for k -means. k -mean algorithm

is executed on a given data set 10 times to see cluster stability and convergence. To

check for stability of the clusters during the 10 runs of k -means with the three most

populated clusters are compared from one run to the other observing the populations

amount does not changes. If the population numbers are relatively the same this is a

strong indication of cluster stability. Measuring each flow to all the clusters centers

is made to verify that the clusters that k -means assigned are actually the closest in

Euclidian distance. k -mean is executed twice more with k equals to twice the amount

of distinct application names and k equals to half the amount of distinct application

names. The amount of k is determine by two factors the clusters homogeneity of

population application names and distance from other clusters. This is repeated for

the sliding window sizes of 5, 10, and 15.

Three different window sizes to (5, 10, and 15) were selected. Because memory

dumps are performed every 30 minutes, the window size must be small enough to

isolate the anomaly and then be able to further investigation using the memory dumps

close to the time of the suspected malicious activity. If the window size is too big an

analyst must filter through multiple memory dumps.

49

3.6.1.3 Anomaly Detection Threshold. A data set of labeled known

anomalous activity is evaluated using models generated previously from the script in

Appendix A. The result of the assigned membership is analyzed to identify if the pro-

cesses during these times differ and deviate from the center significantly. The further

away from the assigned cluster is assumed to be anomalous. A threshold value is

determined using density the cluster and where the known anomalous processes dis-

tance compares to the centroid of the assigned membership. To identify the anomaly

detection threshold a rough fuzzy membership using the average distance of all the

flows in the clusters plus the standard deviation is considered the threshold for each

cluster.

3.6.1.4 Data Collect and Problems. The labeled data for normal

activity was collected using two computers running the Windows 7 OS. The script

in Appendix A lists all the tasks performed with the times of execution. The user

tasks include opening, altering, and downloading files files from internet, opening and

closing user applications, browsing the internet, and using Microsoft office applications

such as Word, Excel, and Outlook. The objective is to have a suitable representation

of application types in the labeled data collect and user tasks.

The labeled data for malicious activity used Metasploit as the software tool to

penetrate the computer traversing through the file system, killing processes, down-

loading files, and taking a snapshot of the desktop. The exploit used was hiding its

process (PID = 3368, name = notepad.exe). The purpose of the malicious activity

data collect is to observe these flows and measure where these flows would be assigned

in the model and if they measure outside the threshold of the cluster.

3.6.2 Uncontrolled Experiments. The purpose of the uncontrolled experi-

ments is to determine if a pattern of behavior of processes from different machines

was performing similarly. An internet browser in one machine is performing similarly

to an internet browser in another machine. The difference from the uncontrolled ex-

periments are the type of applications are unknown. The behavior associated with

50

time could be correlated to the controlled data in the controlled experiments. The

uncontrolled experiments the behavior cluster is unknown with only the application

names giving the best guess on application behavior.

The training data acquired for the uncontrolled experiments was from the

HACKFEST exercise held at the Air Force Institute Technology (AFIT), Wright

Patterson Air Force Base OH, from September 11 , 2011 - September 12, 2011. The

two day exercise consisted of two teams, the Blue Screens of Death (BSOD) and Ctrl-

Alt-Elite(CAE). The objective of both teams was to defend their computer assets

from attacks or intrusions and at the same time go on the offensive and attack the

other team with any intrusion techniques. A point is given for each successful attack

by each team. At the end of the two day exercise the team with the most points is

the winner of the HACKFEST exercise.

HACKFEST is the capstone exercise for Air Force ROTC cadets from different

universities in the United States participating in the Advanced Cyber in Engineering

(ACE), Cyber Boot Camp. This is a specialize training for college ROTC cadets

going into the field of Engineering and Cyber. It’s a 10 week program teaching the

techniques of cyber warfare and ends with the HACKFEST exercise that put their

training into practice in a military cyber warfare setting.

Team BSOD had about 27 VMs it was responsible for defending and CAE about

30 VMs it was responsible for defending. Host log files for each VM were captured in a

single file in a syslog format for the BSOD team. The host machine were running Xen

with windows7 or windows 2003 virtual machines running on the host. A memory

capture and situational memory forensic tool (CMAT) was running on the host Linux.

CAE team had virtual machines part of their infrastructure and acted like separate

physical computers. The host logs files were captured for all virtual machines. For

each computer system and virtual machines a memory capture tool was used to take

a snapshot of the memory approximately twice per minute. After the HACKFEST

exercise it was identified that attacking machines were not dumped, and some VM’s

51

were not up and running during the HACKFEST. Network traffic was captured for the

CAE team while the BSOD network capture software crashed early with no network

traffic data captured for BSOD. Paper logs were supposed to be used by both teams

to record all major events of the exercise but both failed to record any events of the

exercise.

During the HACKFEST exercise, Windows2k3 or Windows7 was the guest’s

operating system on the host Linux machines running CentOS with Xen as the Hy-

pervisor. The ROTC cadets goals were to infiltrate the other teams VMs and at the

same time defend their VMs. CMAT was running on all hosts machines and produced

six text files containing the memory features in a tab-delimited. During the exercise

CMAT was configured to dump the memory features twice every minute.

3.6.2.1 Combined Baseline. The flows of one computer was clustered

to create models of normal behavior. To see if the validity of combining flows from

different computers and arriving at a usable solution was also achieved flows from the

different computer of the same OS in the HACKFEST exercise were combined and

k -means was run against those flows. The purpose was to see if liked applications

from one machine group together.

3.7 Disadvantage of the Selected Research Methodology

Flow generation and model creation was highly dependent on the CMAT data.

Dealing with inconsistent data collect times was difficult and looking at the times of

these file names that represents times of capture was mostly a manual processes to

verify the frequency of the output files and events. At any point in time there were

missing files and so the features of those files that some missing files were counted as

zeros for that time of the observation. The system drivers was not associated with any

processes but were associated with the time of the capture. The system drivers just

counted the drivers for all the processes during the time window the system driver

information was available. During the time the system driver information was not

52

available it was counted as zeros for the flows or the counts from the past 30 minutes

from the last time the information was available.

Clustering using k -means might not have been the best way to cluster the flows.

A density clustering like expectation maximization might have been more appropriate.

With the current method k -means assumes that the clusters are of the same size

clusters with similar densities. The distance of these clusters were close because the

real changes in data by looking at the flows were the changes in the DLLs, ports

if it interacted with the internet, and file permissions. The rest were mostly zeros.

Looking at these lack of changes to the other features a feature selection mechanism

could have been implemented to decrease the 194 dimensional space. This research

process spent the majority of the time trying to find out how to get from the raw

CMAT feature files to a processes flows. After a method was developed and executed

to create flows the next step was creating flows from all these CMAT files. This was

an overwhelming task resource wise, it was also easy to get lost in the data where

it was almost too much information even when the abstraction was made from raw

feature files to flows.

3.8 Summary

The clustering of process flows and the approach discussed is meant to provide

results that validate the concept of grouping like processes together is possible. These

grouping of clusters started with an idea to use CMAT raw feature files in a usable way

to detect anomalous processes. No gold standard of a data set was made using CMAT

feature files and no work has been done using a feature set of processes in memory. A

comparison of methods is not possible and accuracy measures cant really be obtained

unless labeled data of flows is provided. Only a limited number of labeled data can

be obtained of anomalous flows. The technology is simply not mature enough to

provide this type of system. When the sensor technology is mature enough to provide

the flexibility to quickly and efficiently provide flows in near real time only would this

system be up and running. This chapter highlighted the research goals and hypothesis,

53

a description of creating the database for generating flows, the ideal test environment,

and the cluster designator analysis along with the assumptions and limitations. The

results of the limited testing could be found in Chapter 4. The results in chapter 4

does show that new flows from another machine was clearly closer in euclidian when

measured in the same solution space to the same cluster with the same application

name from another machine. Statically as described by the process flows these process

are similar. Due to some technical issues not all planned tests were executed so future

work must be included for more of an exhaustive verification of this proposed method.

54

IV. Results Analysis

To determine if host derived flow based features could be used to behaviorally identify

activities on a computer two data sets were generated. The first data set consisted

of scripted events in which all of the user activities and the timing of those activities

are known. The second makes use of an unknown situation and is a collection of

data from a ACE HACKFEST defense exercise. Unfortunately, both of these data

collections have flaws associated with data collection tool malfunctions. These flaws

appear as gaps in the timeliness of collection, increasing delays, and missing data.

The following sections discuss the analysis of these two data collections. This

analysis does show that the flow features do result on a strong behavioral clustering.

However, because of the problems with the data, these results are exploratory and no

definitive conclusions are drawn.

4.1 Controlled Experiment

Table 4.1: Timeline for Controlled Experiment.
Period Window Duration Frequency

1
cmatoutput

(sec)
Sensor Capture

1 1 - 40 2012 03 21; 11:33:13 - 2012 03 21; 11:32:36 30 40
2 41 - 57 2012 03 21; 11:53:14 - 2012 03 21; 12:02:37 35 17
3 60 - 85 2012 03 21; 12:24:39 - 2012 03 21; 12:33:41 22 26
4 86 - 116 2012 03 21; 12:39:05 - 2012 03 21; 12:43:40 9 31
5 117 - 159 2012 03 21; 13:52:46 - 2012 03 21; 14:32:06 56 43
6 160 - 166 2012 03 21; 14:57:49 - 2012 03 21; 15:01:49 40 7
7 167 - 189 2012 03 21; 15:28:16 - 2012 03 21; 15:41:54 37 23
8 190 - 200 2012 03 21; 16:05:17 - 2012 03 21; 16:12:07 47 11
9 204 - 221 2012 03 21; 16:49:30 - 2012 03 21; 17:01:57 44 18
10 222 - 229 2012 03 21; 17:26:28 - 2012 03 21; 17:32:02 48 8

The controlled experiment provides data to correlate and label behavior of user

interaction to known applications. The test included opening internet browsers, surf-

ing the internet to websites such as facebook.com, youtube.com and google.com. The

labeled behavior included creating a word document using winword.exe saving the

file and deleting the file. It also includes user interaction with the GUI of the Mi-

crosoft office products like word, excel, powerpoint and outlook, and traversal of the

file system, altering files, moving files to different folders, and deleting files.

55

The goal was to capture the activities of a normal user on a personal computer.

The drawback of this process is that there is no documented normal user behavior and

normal activity a person would perform on a computer. A casual computer user might

use an internet browser for most of the computer interaction for checking email, online

banking such as paying bills, visiting social media websites such as youtube.com,

facebook.com, or twitter.com, and creating word documents. Capturing a “normal

user” on a computer has too many factors such as personal interest, age, work, and

school. Appendix A shows the script of the actual user interaction with the computer

systems.

Unfortunately the CMAT feature files did not capture all scripted behavior of

the different application types. It did successfully capture the parts of the script which

included sending email using outlook.exe, opening calc.exe, opening notepad.exe and

using explore.exe. The rest was not captured because of sensor error and not knowing

that it crashed. Table 4.1 shows the sensor captures for computer 7 4. The frequency

from time period 3 and 4 was too different that the flows created during these time are

assumed invalid. Appendix A showed that two computers were part of the script but it

was determined that computer 7 5 was unusable for clustering as the frequencies were

too sporadic. The focus is to demonstrate that the script data and the application

in the data were clustering similar applications were to track applications present

after time period 5. Those flows are considered valid as the frequencies show smaller

variance than the earlier time periods. The four applications being analyzed and

tracked were explorer.exe, calc.exe, outlook.exe and notepad.exe. Internet browser

behavior were also analyzed with two different browsers, chrome.exe, and iexplore.exe

4.1.1 Parameter Settings. The parameters being optimized are the number

of clusters k and the size of the sliding window. For this data set the sliding window of

5 discrete time intervals was chosen. As Table 4.1 shows that time period 6, 8 and 10

shows that during those time periods a sliding window of 10 or 15 would be too large

of a window and therefore these periods would not be included for sliding window 10

56

and 15. To capture the behavior for these periods only a sliding window of 5 could

be used. In the uncontrolled experiments where the time periods were much greater

analysis of increasing the time windows observed. For the uncontrolled experiments

the sliding window of 5 was the best choice.

The size of the sliding window is highly dependent on the sensor output on the

raw feature files. Sometimes have a sliding window of 10 is too large because of the

gaps in times. The sliding window used was a sliding window of 5 because it captured

small enough increments so that gaps occur less than for 10 or 15 instances of a time

event. Ideally, you want to have small enough sliding window to narrow in the times

of the anomalous process but big enough that a user is not bombarded with data.

The structure extracted for clustering flows is a vector of 194 dimension long

with only 191 being used for clustering. This system only needs cluster centers and

threshold values to detect anomalies as outliers of the assigned clusters . These

vector are the centers of these clusters, it is calculated as the average of all features

or dimensions by all of its members of the cluster. The parameters therefore are the

number of clusters to use in the learning phase to get the mean vector. This was

calculated by starting with 62 clusters because there are 62 distinct application name

within the training data. After running k-means 30 times, the model with the best

sum of squared error was evaluated. During the evaluation it was discovered that

flows from other clusters were closer to its center than clusters it was assigned to.

k-mean ran again but doubling the k to 124. There was one empty cluster so the k

used was 123. At this setting all cluster members are closer to their own center than

any other center.

The threshold is the last parameters that needs to be determined. This is a

user defined value based on observation of the cluster’s population and cluster type.

Some clusters might not have a threshold value due to the randomness of the type

of processes that are contained in the cluster. Application type processes do cluster

within one cluster containing the same application name. The threshold value used

57

was the maximum distance of an instance within the cluster. The calculator, note

pad, and outlook processes did fall within the threshold value. The threshold value

can be adjusted depending on the types of application the cluster is characterized as.

An internet browser will have a larger threshold than notepad.exe because a browser

accesses more services, resources, and network ports which affect the values of features

in a flow. A standardize threshold value would not work for a clustering system to

detect an anomalous process. The following discusses the Davies-Bauldin and the

Dunn index as two ways to evaluate the relationship between members in the same

clusters and relationships between other clusters.

4.1.1.1 Davies-Bouldin index. The Davies-Bouldin index [40] is cal-

culated by

DB =
1

n

n∑
i=1

maxi 6=j

(
avgdisti + avgdistj

d(ci, cj)

)
.

The avgdisti and avgdistj is the average distance of cluster i and jto its centroid.

d(ci, cj) is the distance between the two centroid ci and cj and n is the number of

clusters. The numerator represents the intra-cluster relationship and the denominator

represents the inter-cluster relationship. With this index a smaller value is the best

model because it represent dense clusters as well as cluster far apart from other

clusters.

4.1.1.2 Dunn index. The Dunn index [41] is calculated by

D = min1≤i≤n

(
min1≤j≤n,i 6=j

(
d(i, j)

max1≤k≤nd′(k)

))
.

The numerator is the distance between clusters i and j and d′(k) represents the

intra-cluster distance of cluster k. Inter-cluster distance is the maximum distance

between any pair of elements in cluster k. This index is different form the Davies-

Bouldin that a larger value is considered the best model to select.

58

These two indexes assign the best scores to models that produce clusters that

are dense, having high similarity measures and with clusters far away from each other.

The problem with selecting the number of clusters with just the Davies-Boudlin and

Dunn index criteria results in flows that are not nearest to its own named process

center. The k-Means algorithm was iteratively doubled until the members of the

clusters were actually the nearest to its centroid. The parameters that worked best

for the controlled experiments was a sliding window of 5 and a k value of 121. Figure

4.1 and 4.2 are the graphs that show the Davies-Bouldin index and Dunn index for

window 5 and window 10 as the number of cluster k increases. Figure 4.1 shows the

ideal number of cluster k for a sliding window of 5 is around 40 using the Davies-

Bouldin index and for the Dunn index the graph shows a value of approximately 25.

Figure 4.2 shows similar results for the Davies-Bouldin but for the Dunn index shows

a k value less than 10 is ideal. These might represent the best cluster using inter-

cluster and intra-cluster relationship but measuring the actual flows to its assigned

cluster does not result in the nearest cluster. This indicates the clusters are likely too

close together and therefore having more clusters will provide better separation.

Figure 4.1: Index Score for Window 5.

59

Figure 4.2: Index Score for Window 10.

4.1.2 Data Efficacy of Clusters on Individual Processes. Table 4.2 shows

the 30 most populous k -means clusters from the normal behavior on computer name

7 4. k -means clustering algorithm executed 30 times to see cluster stability of the

top three populated clusters. The one with the lowest sum of squared errors was

evaluated on their cluster population to verify if the members of the clusters have the

lowest Euclidian distance to its center. It was found with k=62 with a sliding window

of 5, that members of clusters were actually closer to other clusters than their own.

An observation that stands out is that one of the clusters contains 30 percent

of the flows even if you change k from 62 to 124. The reason for this large number of

flows is due to the nature of the processes flow with the SearchProtocol application.

This processes is always present in the background due to the way the OS uses it. It

may be running continuously in the background. It was observed that other processes

accompany this flow. Whenever a flow with the application name SearchProtocol is

present 15 other process flows are also present from the same time window. Calcu-

lating the Euclidian distance away for the groups mean vector for these 15 and the

60

Table 4.2: Computer 7 4 k-Means 3 results of the most populated clusters.
Iteration Cluster 1 Cluster 2 Cluster 3 sum of squared errors
1 2840 (29) 612 (6) 564 (6) 1719.891285
2 2821 (29) 569 (6) 563 (6) 1554.308249
3 2827 (29) 643 (7) 563 (6) 1003.404694
4 2846 (29) 564 (6) 563 (6) 1162.532282
5 2846 (29) 645 (7) 572 (6) 1180.472643
6 2846 (29) 607 (6) 315 (3) 1130.284151
7 2846 (29) 617 (6) 455 (5) 2239.774589
8 3021 (31) 668 (7) 562 (6) 1788.961691
9 2827 (29) 573 (6) 315 (3) 2231.603146
10 2846 (29) 664 (7) 455 (5) 125.5029982
11 2846 (29) 570 (6) 565 (6) 1887.717425
12 2846 (29) 667 (7) 341 (3) 1431.417298
13 3002 (31) 564 (6) 563 (6) 1725.158949
14 2846 (29) 667 (7) 440 (4) 1370.507369
15 2827 (29) 563 (6) 315 (3) 1452.995254
16 2846 (29) 571 (6) 443 (3) 1126.979472
17 2846 (29) 656 (7) 465 (5) 1806.659177
18 2846 (29) 610 (6) 464 (5) 1621.125406
19 2846 (29) 534 (5) 408 (4) 1681.481552
20 2846 (29) 704 (7) 425 (4) 1026.585827
21 3009 (31) 621 (6) 419 (4) 1413.074045
22 3021 (31) 561 (6) 402 (4) 1747.645128
23 3021 (31) 612 (6) 562 (6) 1145.36198
24 2846 (29) 610 (6) 315 (3) 984.4036026
25 3021 (31) 667 (7) 453 (5) 1211.900995
26 2846 (29) 565 (6) 422 (4) 1514.965077
27 2827 (29) 621 (6) 437 (4) 1184.912736
28 2846 (29) 657 (7) 341 (3) 1499.906042
29 2846 (29) 536 (5) 406 (4) 1482.422749
30 3002 (31) 563 (6) 541 (6) 3000.298888

Table 4.3: SearchProtocol and Accompanying Processes.
896 SearchProtocol
1048579 NO NAME
1048586 NO NAME
1114120 NO NAME
1769477 NO NAME
1835016 NO NAME
2162692 NO NAME
5308422 NO NAME
5636100 NO NAME
6160386 NO NAME
7143427 NO NAME
7208963 NO NAME
7536644 NO NAME
7733251 NO NAME
1481769136 NO NAME
2233238792 NO NAME

61

process flow with the application name of SearchProtocol shows all are exactly the

same distance away from the mean vector. SearchProtocol flow has accompanying

flows wherever it was observed and implies that they are the same. Table 4.3 list the

SearchProtocol PID = 896 and the other 15 PIDs that accompany it.

Table 4.4: Controlled Experiments Process Flows.
PID 164 notepad.exe 2276 calc.exe
WINDOW CLUSTER WINDOW CLUSTER
190 – 222 15 190 – 222 15

PID 3588 outlook.exe PID 2929 explore.exe
WINDOW CLUSTER WINDOW CLUSTER
66 8 60 – 66 98
67 – 69 93 67 – 68 27
70 32 69 69
117 104 70 48
118 – 154 89 117–154 98
155 92 155 119
160 – 161 89 160 – 161 98
162 92 162 – 222 119
167 – 195 89
196 92
204 – 207 88
208 32
222 7

4.1.3 Tracking distinct processes. Table 4.4 describes the four processes

in the computer system focused on for data analysis. Any flows before window 118

are assumed invalid because 118 refers to time periods were the flows are invalid.

Table 4.1 correlates the bad flows with the time periods and time windows of the

data sets. Two processes behaving the same, notepad.exe and calc.exe have all their

flows assigned to cluster 15. The script did not include any user interaction to these

application so having both applications belong to the same cluster is likely the correct

cluster assignment. This cluster might represent basic GUI behavior of both processes.

Table 4.5 shows the average DLLS for cluster 15, 89 and 92. Cluster 89 and 92 are the

clusters outlook.exe are assigned to. Comparing the counts of DLLs associated with

cluster 89 and 92 shows greater DLL usage than cluster 15 as seen in Table 4.5. The

file handles with read, write, delete and no permissions in Table 4.6 show a correlation

that cluster 89 and 92 has greater number of file handles associated with the cluster.

The only difference between 89 and 92 is the presence of registry key features as shown

62

in Table 4.7. The behavior that can be assigned to 89 and 92 is that these clusters

contain flows that perform more file manipulation and cluster 15 might be the GUI

of the application as calc.exe and notepad.exe have no related function beyond a GUI

interface to the user.

Table 4.5: Controlled Experiments Process Flows with DLL Features.
CLUSTER DLLST0 DLLST1 WindowDLLS MINDLLS MAXDLLS AVGDLLS STDDLLS VARDLLS
15 27 27 135 27 27 27 0 0
89 149.0938 149.0938 745.4688 149.0938 149.0938 149.0938 0 0
92 117.375 117.375 586.875 117.375 117.375 117.375 0 0
CLUSTER Q1DLLS MEDDLLS Q3DLLS FFTDLLS FFTDLLS2 FFTDLLS3 FFTDLLS4 FFTDLLS5
15 27 27 27 135 65.1838 65.1838 27 27
89 149.0938 149.0938 149.0938 745.4688 359.9442 359.9442 149.0938 149.0938
92 117.375 117.375 117.375 586.875 283.3683 283.3683 117.375 117.375

Table 4.6: Controlled Experiments Clusters File Handles with Permissions.
CLUSTER READPERT0 READPERT1 WindowREADPER MINREADPER MAXREADPER AVGREADPER STDREADPER VARREADPER
15 5.3071 5.3543 26.7008 5.2756 5.3622 5.2992 0.0157 0.0236
89 19.0938 18.7969 95.1719 18.7969 19.0938 19.0313 0.1094 0.8906
92 25 25 125 25 25 25 0 0
CLUSTER Q1READPER MEDREADPER Q3READPER FFTREADPER FFTREADPER2 FFTREADPER3 FFTREADPER4 FFTREADPER5
15 5.3622 5.3622 5.3622 26.7008 12.9235 12.9235 5.3594 5.3342
89 19.0938 19.0938 19.0938 95.1719 46.1554 46.1554 19.1182 19.1182
92 25 25 25 125 60.3553 60.3553 25 25
CLUSTER WRITEPERT0 WRITEPERT1 WindowWRITEPER MINWRITEPER MAXWRITEPER AVGWRITEPER STDWRITEPER VARWRITEPER
15 2.2756 2.3071 11.4567 2.2756 2.3071 2.2756 0 0
89 15.5 15.3125 77.4063 15.25 15.5625 15.4375 0.0938 0.625
92 17.25 17.25 86.25 17.25 17.25 17.25 0 0
CLUSTER Q1WRITEPER MEDWRITEPER Q3WRITEPER FFTWRITEPER FFTWRITEPER2 FFTWRITEPER3 FFTWRITEPER4 FFTWRITEPER5
15 2.2913 2.2913 2.2913 11.4567 5.5403 5.5403 2.3034 2.2988
89 15.5313 15.5313 15.5313 77.4063 37.5471 37.5471 15.568 15.5529
92 17.25 17.25 17.25 86.25 41.6452 41.6452 17.25 17.25
CLUSTER DELETEPERT0 DELETEPERT1 WindowDELETEPER MINDELETEPER MAXDELETEPER AVGDELETEPER STDDELETEPER VARDELETEPER
15 3.6142 3.6614 18.2362 3.5827 3.6693 3.6063 0.0157 0.0236
89 5.0938 5.0156 25.3906 5.0156 5.0938 5.0781 0.0313 0.0625
92 9.125 9.125 45.625 9.125 9.125 9.125 0 0
CLUSTER Q1DELETEPER MEDDELETEPER Q3DELETEPER FFTDELETEPER FFTDELETEPER2 FFTDELETEPER3 FFTDELETEPER4 FFTDELETEPER5
15 0.0236 3.6693 3.6693 3.6693 8.84 8.84 3.6727 3.6522
89 0.0625 5.0938 5.0938 5.0938 12.3129 12.3129 5.1002 5.1002
92 0 9.125 9.125 9.125 22.0297 22.0297 9.125 9.125
CLUSTER NOPERT0 NOPERT1 WindowNOPER MINNOPER MAXNOPER AVGNOPER STDNOPER VARNOPER
15 2.0394 2.0394 10.1969 2.0394 2.0394 2.0394 0 0
89 16 15.75 79.75 15.75 16 15.9375 0.0938 0.625
92 17 16.5 84.25 16.5 17 16.75 0.125 0.25
CLUSTER Q1NOPER MEDNOPER Q3NOPER FFTNOPER FFTNOPER2 FFTNOPER3 FFTNOPER4 FFTNOPER5
15 2.0394 2.0394 2.0394 10.1969 4.9235 4.9235 2.0394 2.0394
89 16 16 16 79.75 38.6771 38.6771 16.0206 16.0206
92 17 17 17 84.25 40.9002 40.9002 16.75 16.5138

Table 4.7: Controlled Experiments Process Flows Registry Key Features.
CLUSTER REGKEYST0 REGKEYST1 WindowREGKEYS MINREGKEYS MAXREGKEYS AVGREGKEYS STDREGKEYS VARREGKEYS
15 0 0.5827 0.5827 0 0.5827 0.0709 0.2126 0.7402
89 0 0 0 0 0 0 0 0
92 0 52.5 52.5 0 52.5 10.125 20.75 468.875
CLUSTER Q1REGKEYS MEDREGKEYS Q3REGKEYS FFTREGKEYS FFTREGKEYS2 FFTREGKEYS3 FFTREGKEYS4 FFTREGKEYS5
15 0 0 0 0.5827 0.5827 0.5827 0.5827 0.5827
89 0 0 0 0 0 0 0 0
92 0 0 0 52.5 52.5 52.5 52.5 52.5

The processes outlook.exe appears in window 66(12:26-12:29) to 70(12:29-12:31)

in Table 4.4 but anything before 117 is considered an invalid flow. It re-appears in

windows 117(12:43-13:54) to 222(17:01-17:28) at these times outlook.exe was opened

at 15:34 and an email was sent. At time window 117 the processes flow was assigned

63

to cluster 104, this could be because of the opening of outlook.exe so the initialization

of the application might start in cluster 104. The flows then jump to cluster 89 where

90 percent of the outlook.exe falls. The only time the outlook.exe changes cluster

was 5 time units before a time gap, the sliding window was stopped and restarted

after the time gap. Most of the flows did land at this cluster but the only user

behavior for outlook that was captured was opening outlook and replying to an email

message. More testing needs to be done to fully characterize outlook.exe for different

permutations of sending email, attaching a file, downloading a file and clicking on a

link. At the time of the data collect this was not evident that applications needs to

have user interaction not just opening a file and letting it run. If an application has

user interaction that needs to be captured in CMAT feature files.

Figure 4.3: DLL Features for Cluster 15.

The process notepad.exe begins during time window 190 and stops at time

window 222. During this time notpad.exe was opened but nothing was done to the

64

Figure 4.4: Average DLL and File Handle Permissions Features for Cluster 15.

65

program. It remained open with no interaction or user input, no typing of text and

saving a file. All flows are assigned to cluster 15.

Figure 4.5: DLL Features for Cluster 89.

The next processes of interest was calc.exe. The program started running at

time window 190 (16:04) and the script confirms that this was opened at that time.

From that time to the end of the data collect this program was running. All the

flows were assigned to cluster 15. An observation was made that the calc.exe and

the notepad.exe belonged to the same cluster. This was unexpected because the

differences in the types of applications. An explanation for this was because of the

lack of interaction to both processes. Statistically they are behaving the same in

memory no inputs and no calculation were made to the calculator. No typing of text

was made to the notepad.exe application. For the most part the same application

name clustered together such as outlook.exe, notepad.exe and calc.exe. The last

process type is explorer.exe, it was found in a few cluster but most of the cluster

66

Figure 4.6: Average DLL and File Handle Permissions Features for Cluster 89.

67

assignment was in cluster 98. Figure 4.3 and Figure 4.4 show the statistics for DLLs,

and file handles with permissions of the features associated with cluster 15. Figure 4.5

and 4.6 shows the same statistics for cluster 89, and Figure 4.7 and Figure 4.8 show

the same statistics for cluster 98. From the figures and the cluster features shows that

cluster 98 has greater number of DLLs and file handles than cluster 15 and 92. This

confirms that the process flows of explore.exe assigned to cluster 98 has more activity

with respect to file handles and DLLs. Therefore more file manipulation activity is

associated with cluster 98.

Figure 4.7: DLL Features for Cluster 98.

4.1.4 Test of Clusters. The main purpose for this research was to see

if the novel way of representing processes in memory as flows could be used as a

way to possibly detect anomalies. The first step is to determine if flows of the same

application name are actually alike from the same machine or from a different machine.

68

Figure 4.8: Average DLL and File Handle Permissions Features for Cluster 98.

69

k-means clustering was used to group similar instances together from one machine and

flows from another machine are compared to verify that the clusters remain consistent.

For example, the flows for calc.exe on one machine should be closest to the cluster

that contains calc.exe when coming up with the model. k-means is executed on a

training set then new unseen flows are measured to confirm that the predicted cluster

was selected.

The scope was limited to several processes that are observed in both the test

and training set for a better understanding and not to get overwhelm on the amount

of data. Testing showed a flow with the application name running in one machine

will select the correct cluster for the same application name from another machine.

These flows are statistically the same with some variance. The exceptions to this were

Windows operating system processes like svchost.exe that is responsible for a variety

of services. A number of services share this in order to reduce resources. This was

too difficult to narrow down into a few clusters because of the nature of this process

and the numerous instances of it running.

A new set of flows previously unseen was measured against all the centers mean

vector. This was to verify that the closest Euclidian distance of the same application

type of the unseen flows are within the same cluster threshold defined as the maximum

distance of instances during the training of the clusters.

Table 4.8: Timeline for Controlled Experiments with Anomalous Processes.
Period Window Duration Frequency

1
cmatoutput

(sec)
Sensor Capture

1 1 - 18 2012 03 26; 14:01:01 - 2012 03 26; 14:06:12 18 18
2 19 - 34 2012 03 26; 14:45:36 - 2012 03 26; 14:54:55 37 16
3 35 - 39 2012 03 26; 15:12:53 - 2012 03 26; 15:14:50 29 5
4 40 - 48 2012 03 26; 16:02:01 - 2012 03 26; 16:11:17 59 9
5 49 - 66 2012 03 26; 16:49:29 - 2012 03 26; 17:07:04 66 29

4.1.5 Data Collect and Problems. Table 4.8 presents the timeline for the

data capture where the anomalous activity was captured. The data collect was in-

consistent and yields no useful flows from feature files. The frequencies of the CMAT

sensor did not stabilize. In Table 4.8 the frequencies of the feature files steadily in-

70

creased starting with 18 seconds during the first time period to growing three times

in value during the fifth time period. The flows of application name of calc.exe, out-

look.exe, and notepad.exe were extracted but only using the three largest frequencies

of 37, 59 and 66. The predicted cluster of PID = 2628 of a unseen processes flow of

calc.exe was 15. The distance of the new calc.exe to the cluster 15 was 27.6. There

were 41 flows with the new extraction and 19 out of the 41 did accurately predict the

new flows of calc.exe. Some of the reason for the misclassification were time gaps in

the sensor outputs. The predicted cluster for the new previously unseen PID = 2876

notepad.exe was 15. 28 out of 47 accurately predict the new flows for notepad.exe. In

Table 4.9 is the distance of the predicted distances for the anomalous processes hiding

under the application name of notpad.exe. The distance are outside the threshold of

cluster 15 but closer to other clusters. The predicted cluster assignment for the new

previously unseen flow for outlook.exe performed poorly as 6 out 32 was closest to

cluster 89. The behavior of outlook.exe during these time might have moved due to

behavior differences from the captured model like user interaction.

Table 4.9: The anomalous processes hiding under notepad.exe
PID cluster15 PID cluster15
1008 869.5562 3368 869.4033
1008 651.6951 3368 651.5577
1008 419.1466 3368 418.2496
1008 262.7405 3368 260.0134
1008 138.2578 3368 129.0791
1008 142.7257 3368 129.0791
1008 142.7257 3368 129.0791
1008 142.7257 3368 129.0791
1008 264.5862 3368 260.0155
1008 419.6903 3368 418.2509
1008 651.8482 3368 651.5585
1008 869.3189 3368 869.404

The four new unseen process flows from another data set selecting the predicted

cluster from the training set gives some indication that processes with the same ap-

plication type from one machine are similar to another machine. This controlled

71

test was flawed and verification was not accomplished because the training data had

flaws. The new unseen flows were considered invalid because the CMAT sensor was

inconsistent with feature file outputs. The next sections discusses the uncontrolled

experiments. These experiments were uncontrolled but the data and flows generated

from this data set is considered valid. The frequencies are similar and the period

of time is greater. A cluster behavioral analysis is presented using the uncontrolled

experiments in the following sections.

4.2 Unlabeled Data Collect: Uncontrolled Experiment

The purpose of the uncontrolled experiments is to determine if a pattern of

behavior of processes from different machines was performing similarly. The clusters

are unknown with only the application names giving the best guess on application

behavior. The test seek to determine if a model can be extracted if the activity of

the system is unknown.

The HACKFEST data was consistent for Windows 2003 OS but lacked the con-

sistency of sensor output frequency in most of the Windows 7 machines. Only one

Windows 7 machine was used for training and two machines were used to model Win-

dows 2003 OS. Three machines were selected because of the regular frequencies they

provided. The three machines were also chosen because of attainability of creating

process flows. The method for generating flows was a time consuming processes be-

cause of the combinations of parsing the CMAT feature files, populating the MySQL

database with the features, then querying for relevant statistical characteristics of a

process. A trade off in the amount of training data and the amount of the test set

used was made to focus on providing a method for using the flows generated. The

purpose of the unlabeled data is to verify that within this type of data set application

of the same type do cluster.

4.2.1 Window 2003 OS, CMAT Captures. The timeline for a Windows

2003 OS used is in Table 4.10. This data set had potential for analysis but the lack of

72

Table 4.10: Hackfest BSOD-02 TimeLine.
Period Window Duration Frequency

1
cmatoutput

(sec)
Sensor Captures

1 1 - 79 2011 08 11; 11:34:38 - 2011 08 11; 12:04:19 23 79
2 80 - 144 2011 08 11; 12:09:49 - 2011 08 11; 12:34:28 23 65
3 145 - 165 08 12; 07:29:07 - 2011 08 12; 07:36:22 21 21

different applications of the same type running on the machine limited its usefulness.

There was only one internet browser and the rest of the applications were native to

the operating system. The following subsections outline the types of applications

running in a server environment with the focus emphasized in the next section that

demonstrate the novel way of modeling behavior with clusters in the Windows 7 OS.

The number of process flows generated from computer BSOD-02 are:

• 3775 flows using a sliding window of 10 discrete time observations

• 2945 flows using a sliding window of 20 discrete time observations

• 1357 flows using a sliding window of 30 discrete time observations.

Table 4.11: Assigned PIDs Application Name.
Application PID Application PID Application PID Application PID

0 cmd.exe 1332 svchost.exe 652 nc.exe 2116
Idle 0 svchost.exe 1340 svchost.exe 656 rundll32.exe 2152
System 4 SnareCore.exe 1360 svchost.exe 668 explorer.exe 2164
smss.exe 272 SnareCore.exe 1364 svchost.exe 720 fakefmt.exe 2248
smss.exe 284 SnareCore.exe 1368 svchost.exe 724 IEXPLORE.EXE 2356
IEXPLORE.EXE 296 svchost.exe 1520 davcdata.exe 736 svchost.exe 2416
csrss.exe 320 svchost.exe 1564 svchost.exe 740 cmd.exe 2488
davcdata.exe 328 cmd.exe 1576 svchost.exe 756 wmiprvse.exe 2536
csrss.exe 332 svchost.exe 1660 svchost.exe 760 wmiprvse.exe 2920
winlogon.exe 344 svchost.exe 1668 svchost.exe 776 IEXPLORE.EXE 3004
winlogon.exe 356 svchost.exe 1732 svchost.exe 792 mmc.exe 3116
services.exe 392 msconfig.exe 1740 spoolsv.exe 912 wmiprvse.exe 3264
lsass.exe 404 alg.exe 1756 spoolsv.exe 928 cmd.exe 3372
services.exe 404 alg.exe 1768 msdtc.exe 936 logon.scr 3608
lsass.exe 416 alg.exe 1780 msdtc.exe 960 inetinfo.exe 3852
svchost.exe 564 dllhost.exe 1876 rundll32.exe 988 524767
svchost.exe 568 explorer.exe 1976 svchost.exe 1056 2156518208
nc.exe 584 explorer.exe 1988 svchost.exe 1064 3774876801
svchost.exe 612 svchost.exe 2000 svchost.exe 1120 3779113917
wmiprvse.exe 624 nc.exe 2028 inetinfo.exe 1144 3782974786
cscript.exe 628 cmd.exe 2060 inetinfo.exe 1192

cmd.exe 1208
svchost.exe 1316

73

Table 4.12: Cluster Characteristics model for 16 clusters.
CLUSTER AVG MAX MIN Counts STD DEV
1 56.64347 321.2886 33.61744 150 78.03961
2 11.38245 110.1848 5.983956 133 22.90466
3 303.7498 620.9369 117.1756 497 185.8206
4 1.13E-06 1.13E-06 1.13E-06 12 0
5 112.8024 112.8024 112.8024 252 3.40E-08
6 193.3992 374.7108 36.30457 1733 100.7969
7 125.7043 353.7071 14.51939 26 99.11451
8 298.8698 736.5652 43.63628 178 192.8164
9 2.558844 14.71335 1.401272 138 3.750963
10 6.384249 52.61472 3.400962 134 8.351216
11 46.75154 1090.828 22.17669 141 153.9762
12 63.10922 841.6387 28.92818 151 102.7512
13 321.9321 633.1781 153.3658 44 126.5231
14 2.678223 168.728 1.349824 126 14.85195
15 5.58E-07 5.58E-07 5.58E-07 56 8.47E-22
16 1.27E-06 1.27E-06 1.27E-06 4 0

Table 4.11 lists all the processes running on the system. The application types

running on a server environment has small diversity. Most of the processes are related

to the inner workings of the operating system. An assumption in the training data

captured was that the majority of the processes reflects normal process and outnum-

bers potentially anomalous processes. In an ideal world, training data is clean and

only contain non-malicious processes. All processes are assumed to be the correct

processes as it identifies itself in the CMAT feature files. The problem is Processes

that have to do with the operating system cant be contained in a few clusters.

4.3 Windows7 Operating System HACKFEST

Table 4.13: Hackfest BSOD-19 TimeLine
Period Window Duration Frequency

1
cmatoutput

(sec)
Sensor Capture

1 5 - 27 2011 08 25; 11:34:00 - 2011 08 25; 11:43:20 24 24
2 28 - 56 2011 08 25; 12:08:35 - 2011 08 25; 12:32:05 50 29
3 57 - 83 2011 08 25; 13:13:30 - 2011 08 25; 13:33:39 46 27
4 85 - 94 2011 08 26; 01:30:46 - 2011 08 26; 01:33:49 20 10
5 95 - 150 2011 08 26; 01:41:31 - 2011 08 26; 02:00:11 20 56

4.3.1 Cluster Analysis For Windows 7 OS: BSOD - 19. Table 4.13 shows

the observation periods, the CMAT feature files output frequencies with the number

74

of file captures. The observation period 2 and 3 and the frequencies of the CMAT

feature file outputs was approximately double the amount compared to the other

period of observations (1,4, and 5). This type of inconsistency was common in the

operation of the sensor outputs. Too many factors in the sensor environment plus the

sensor was operating in virtual machine environment led to inconsistency of the raw

feature outputs. The only way to verify that the feature files were outputting with a

consistent frequency was after the data collect was accomplished then analyzing the

file names that represents the time are equally spaced time intervals. No real time

analysis was possible to verify the output files are generated on consistent intervals.

The following two data sets from the HACKFEST exercise computers BSOD-

19 and CAE-18 were chosen as the best candidate for analysis. They displayed the

most consistent frequencies with minimal changes form one period to another. The

following sections describe some processes from BSOD - 19 and follow the behavior as

the process progresses through time. The process flows calculated from the raw flow

features are clustered using the k-means clustering algorithm. The sliding window

size was 5, and the value of k was 121. The behavior process flows are characterized

as the cluster assignment it is assigned to. The changes in cluster assignment are

analyzed for differences in the features of the cluster. Membership analysis was done,

the features of the clusters with key distinct difference was labeled or categorized

describing the behavior.

4.3.1.1 Application Name = chrome.exe, PID = 3012, 3428, 1960, 2940.

The process flows in Table 4.16 shows that there is a pattern of an initialization

sequence of behavior. The cluster sequence starts with 67 then transitions to 79 and

109. After cluster 109 the behavior of the three chrome processes do not converge to

a single cluster instead they exhibits different behavior as result of different cluster

memberships.

Looking at the centroid centers of cluster 67, 79, and 109 shows that 79 has

actual values for the features for port, UDP, and registry information. PortsT0 is the

75

Table 4.14: Hackfest BSOD-19 Applications.
application application

chrome.exe rubyw.exe
conhost.exe rundll32.exe
Console.exe SearchFilterHo

csrss.exe SearchIndexer.
dwm.exe SearchProtocol

explorer.exe services.exe
GoogleUpdate.e slui.exe

Idle smss.exe
iexplore.exe spoolsv.exe

javaw.exe sppsvc.exe
LogonUI.exe svchost.exe

lsass.exe System
lsm.exe taskeng.exe

mscorsvw.exe taskhost.exe
msiexec.exe TrustedInstall
nessusd.exe VSSVC.exe

nessus-service wininit.exe
nessussvrmanag winlogon.exe

pg ctl.exe WmiPrvSE.exe
postgres.exe wuauclt.exe

ruby.exe

counts of ports at the beginning of the sliding window and its greater than 0. The same

goes to the maximum ports (MAXPorts), and the Discrete Fast Fourier Transform

of the magnitude of the greatest five discrete number of ports in the sliding window

(FFTPorts, FFTPorts2, FFTPorts3, FFTPorts4, and FFTPorts5). There are ports

associated with this process flow during the start of the processes.

Table 4.15: Hackfest BSOD-19 chrome.exe.
PID 1960 PID 3012 PID 3428 PID2940
WINDOW CLUSTER WINDOW CLUSTER WINDOW CLUSTER WINDOW CLUSTER
60 79
61 – 62 109
63 – 79 57
80 – 81 51 81 67 81 67 81 67
82 68 82 79 82 79 82 79
83 119 83 – 84 109 83 – 84 109 83 – 84 109

85 – 88 85 – 57 85 – 21
– 85 – 57 – 85
-145 85 -145 57 -145 21
146 98 146 98 146 98

76

Table 4.16: Hackfest BSOD-19 Initialization, Ports.
cluster PortsT0 PortsT1 WindowPorts MINPorts MAXPorts AVGPorts STDPorts VARPorts
67 0 0 0 0 0 0 0 0
79 0 0.0877 0.2982 0.0877 0.2105 0.1404 0.0526 0.0526
109 0 0 0 0 0 0 0 0

Q1Ports MEDPorts Q3Ports FFTPorts FFTPorts2 FFTPorts3 FFTPorts4 FFTPorts5
67 0 0 0 0 0 0 0 0
79 0 0.1491 0 0.2982 0.2849 0.2849 0.2469 0.2469
109 0 0 0 0 0 0 0 0

After the initialization sequence of the process flows to clusters 67, 79, then 109

for processes 3012 and 3428, their associated flows are assigned to 85 and 57 shown

in Table 4.15. The differences of the features of cluster 85 and 57 are the counts of

file handles for cluster 85 is slightly greater. On average its only greater by one unit.

This might indicate that the behavior is the same and might be a good candidate to

combine these clusters together. This research did not look into optimizing the clusters

but is left for future research. This research focused on the creation of the flows and

providing a proof of concept that these flows can characterize behavior in memory.

Cluster 79 has the behavior of some type of communication over the internet. Cluster

57 and 85 has the behavior of some file processing or browser interaction without

communication in terms opening ports.

In Table 4.15 the process flows with application name chrome.exe and PID 1960,

after entering cluster 57 from window 63 to 79 shows a jump in cluster starting at

window 80 to 81. This jump could be affected by the system as the initialization

sequence of the other three processes starting at the same time window. Analyzing

the feature averages for cluster 51 as represented as the mean of all the members

associated for this cluster shows that cluster 51 was similar to 85 with no ports, TCP,

and UDP features. The DLLs are greater than cluster 57 and 85. The file permission

features for write, read, and delete in cluster 51 was less than in clusters 57 and 85.

The chrome.exe process flows with PID 2940 shown in table 4.15 has a change in

behavior during windows 85 to 89 and windows 95 to 145 jumping to cluster 21. PID

2940 and 3012 has similar behavior with differences in cluster assignment for 2940

from 85 to 21 during the time windows of 85 to 145. The only difference was in

77

cluster 21 in which no registry key features were present. The behavior was almost

identical with a slight edge in the number of file handles was greater in cluster 21 on

average.

Table 4.17: Hackfest BSOD-19 chrome.exe, iexplore.exe and nessus.
PID 188 chrome.exe PID 3668 iexplore.exe PID 3528 nessus-service PID 3468 nessussvrmanag PID 3548 nessus-service
WINDOW CLUSTER WINDOW CLUSTER WINDOW CLUSTER WINDOW CLUSTER WINDOW CLUSTER
1 79 1 79 1 79 1 79 1 – 59
2 – 3 109 2 – 3 109 2 – 3 101 2 – 3 77 59
4 – 41 4 – 41 4 – 44 4 – 92 – 4 59
– 13 41 – 13 41 – 13 44 – 13 92 5 – 13 76
14 89 14 89 14 89 14 89 14 89
15 – 17 16 15 – 17 16 15 –17 31 15 –18 103 15 –18 103
18 95 18 95 18 95 – 18 103 – 18 103
19 22 19 22 19 22 19 22 19 22
20 – 41 20 – 21 20 – 44 20 – 24 92 20 – 54 76

41 21 44 25 – 78 15 55 – 108
– 79 41 – 79 21 – 79 44 79 – 90 108
80 65 80 51 80 63 90 108
81 51 81 51 81 63 – 81 90 – 81 108
82 68 82 68 82 68 82 110 82 68
83 119 83 119 83 119 83 110 83 119

4.3.1.2 chrome.exe, iexplore.exe and nessus, PID = 188, 3668, 3528,

3468, and 3548. Table 4.17 shows the relationships between process flows of

the application name chrome.exe, iexplore.exe, nessus-service and nessussvrmanag.

There are some underlying relationships between the flows and the time windows.

For PID 188 and 3668 two different internet browser one chrome.exe and the other

iexplore.exe shows an initialization sequence of behavior starting with cluster 79,

jumping to cluster 109 for 2 time window periods, jumping to cluster 41 for 10 time

window periods, jumping to cluster 89 for one time window, going cluster 16 for the

next 2 time windows, then to cluster 95 and cluster 22. The two browser changes

to different clusters after the initialization sequence. The processes has an ending

pattern termination sequence of cluster 51, 68, then 119.

In Table 4.16 shows the initialization assigned clusters for chome.exe and iex-

plore.exe. Cluster 79 has the behavior of ports, TCP, and UDP activity assigned to

the cluster as the numerical averages for the other clusters were 0. Cluster 79 may

be user defined and labeled as network port activity as the behavior. The behavioral

change between PID 188 and 3668 start at windows 20 to 79 where chrome.exe flows

were in cluster 41 and the iexplore.exe flows were in cluster 21. The differences be-

78

Table 4.18: Hackfest BSOD-19 chrome.exe, iexplore.exe
Cluster PortsT0 PortsT1 WindowPorts MINPorts MAXPorts AVGPorts STDPorts VARPorts
79 0 0.0877 0.2982 0.0877 0.2105 0.1404 0.0526 0.0526
109, 41, 89, 16, 95, 22 0 0 0 0 0 0 0 0

Q1Ports MEDPorts Q3Ports FFTPorts FFTPorts2 FFTPorts3 FFTPorts4 FFTPorts5
79 0 0.1491 0 0.2982 0.2849 0.2849 0.2469 0.2469
109, 41, 89, 16, 95, 22 0 0 0 0 0 0 0 0

TCPT0 TCPT1 WindowTCP MINTCP MAXTCP AVGTCP STDTCP VARTCP
79 0 0.0702 0.1754 0.0702 0.1053 0.0702 0 0
109, 41, 89, 16, 95, 22 0 0 0 0 0 0 0 0

Q1TCP MEDTCP Q3TCP FFTTCP FFTCP2 FFTCP3 FFTCP4 FFTCP5
79 0 0.0877 0 0.1754 0.1648 0.1648 0.1343 0.1343
109, 41, 89, 16, 95, 22 0 0 0 0 0 0 0 0

tween these two clusters was the amount of DLLs for 41 was slightly greater with a

difference of 10. The read, write and delete permissions of files associated with the

cluster 41 was slightly greater but the feature that stood out for cluster 41 was it

had registry key associated with it. Taking a look at the features for the termination

sequence of 51, 68 then 119 shows that 51 had more DLLs that 68 and 119 with 119

having the least DLLs for that cluster. The files associated with those cluster show

that 51 has more file handle permissions for read, write and delete, with cluster 68

having the second most and 119 had the least.

An interesting observation in Table 4.18 is the relationship between the two

browsers chrome.exe, iexplore.exe and the nessus applications. Nessus is a software

for vulnerability scanning of a target system. The purpose of the software is to

find vulnerabilities on a target system by scanning the network, and the ports the

target system resides. The behavior of this application deals with communication.

The features of the 194 dimension of the processes flows has ports, TCP, and UDP

information to capture changes in communication activity. Cluster 79 has port, TCP,

and UDP activity shown in Table 4.16 and both nessus applications with PID 3528

and 3468 has the same start up cluster of 79. The behavior of nessus-service with

PID 3528 had similar behavior of the entire life of the process to chrome.exe and

iexplore.exe. The change was in window 15 to 17 it was assigned to cluster 31 instead

of 16, from window 20 to 79 it was assigned to cluster 44 instead of cluster 41 or

21 and in window 80 to 81 it was assigned to cluster 63. The difference between

79

cluster 31 and 16 during the time window of 15 to 17 was cluster 16 had more DLLs

on average about 6 times greater than cluster 31 and the file permissions was also

greater. This is indications that cluster 16 was more active of file activity with both

cluster having no port, TCP and UDP activity.

The two nesses applications with PID 3468 and 3548 have similar behavior

during time window of 14 to 19 but from window 20 to 54 it is assigned to cluster 76

then cluster 108 from time window 55 to 81. These two clusters are almost the same

with slight differences in the permissions features. Comparing these two cluster to the

cluster in PID 3468 and 3528 of the same time window show that it has fewer DLLs

associated with this cluster but has an increase in the file permissions associated with

the two clusters. The applications with similar behavior are assigned to the same

clusters. Nessus that uses ports, TCP and UDP activity shows that the process flows

and the behavior as defined clusters similarly to the browser process flows.

Table 4.19: Hackfest BSOD-19 chrome.exe, iexplore.exe initialization cluster.
PID 616 chrome.exe PID 2976 chrome.exe
WINDOW CLUSTER WINDOW CLUSTER
1 – 2 56 1 – 3 49
3 113

PID 2280 chrome.exe PID 3380 iexplore.exe
WINDOW CLUSTER WINDOW CLUSTER
1 – 2 56 1 – 2 49
3 113 3 113

PID 3588 iexplore.exe
WINDOW CLUSTER
1 – 2 49
3 113

4.3.1.3 chrome.exe, iexplore.exe PID = 616, 2976, 2280, 3380, and 3588.

The process flows for chrome.exe and iexplore.exe during time windows of 1 to 3 in

Table 4.19 starts in cluster 49 or 56 and ends in cluster 113. All three clusters have

port, TCP, and UDP activity. The process flows are behaving as an initialization of

the browser and then the processes terminates at window 3. Table 4.20 shows the

ports, TCP and UDP features for cluster 49, 56 and 113.

80

Table 4.20: Hackfest BSOD-19 chrome.exe, iexplore.exe clusters.
cluster PortsT0 PortsT1 WindowPorts MINPorts MAXPorts AVGPorts STDPorts VARPorts

49 0.1765 0 0.3529 0 0.3529 0 0 0
56 0.0694 0 0.3194 0.0278 0.2222 0.0694 0.0278 0.0417

113 0.2131 0 0.2131 0.2131 0.2131 0.2131 0 0

Q1Ports MEDPorts Q3Ports FFTPorts FFTPorts2 FFTPorts3 FFTPorts4 FFTPorts5
49 0 0.1765 0 0.3529 0.3529 0.3529 0.3529 0.3529
56 0.0694 0.1181 0.0694 0.3194 0.3046 0.3046 0.2625 0.2625

113 0 0.2131 0 0.2131 0.2131 0.2131 0.2131 0.2131

TCPT0 TCPT1 WindowTCP MINTCP MAXTCP AVGTCP STDTCP VARTCP
49 0.0588 0 0.1176 0 0.1176 0 0 0
56 0.0139 0 0.1389 0 0.0972 0 0 0

113 0.0492 0 0.0492 0.0492 0.0492 0.0492 0 0

Q1TCP MEDTCP Q3TCP FFTTCP FFTCP2 FFTCP3 FFTCP4 FFTCP5
49 0 0.0588 0 0.1176 0.1176 0.1176 0.1176 0.1176
56 0.0417 0.0486 0.0417 0.1389 0.1325 0.1325 0.1145 0.1145

113 0 0.0492 0 0.0492 0.0492 0.0492 0.0492 0.0492

UDPT0 UDPT1 WindowUDP MINUDP MAXUDP AVGUDP STDUDP VARUDP
49 0.1176 0 0.2353 0 0.2353 0 0 0
56 0.0556 0 0.1806 0.0278 0.125 0.0556 0.0139 0.0139

113 0.1639 0 0.1639 0.1639 0.1639 0.1639 0 0

Q1UDP MEDUDP Q3UDP FFTUDP FFTUDP2 FFTUDP3 FFTUDP4 FFTUDP5
49 0 0.1176 0 0.2353 0.2353 0.2353 0.2353 0.2353
56 0.0278 0.0694 0.0278 0.1806 0.1721 0.1721 0.148 0.148

113 0 0.1639 0 0.1639 0.1639 0.1639 0.1639 0.1639

4.3.1.4 chrome.exe (PID 3676), explore.exe (PID 512). Table 4.21

shows the last two processes that were tracked on BSOD-19 were chrome.exe (PID

3676) and explore.exe(PID 512). These two processes and their process flows did not

fit any other patterns of the other process flows on the machines. The behaviors were

distinct from the other flows. The start for both processes was cluster 49. That cluster

has port, TCP and UDP activity, making it an initialization cluster like the rest of

the other browsers. The application explore.exe is not a browser but is the taskbar,

Table 4.21: Hackfest BSOD-19 chrome.exe, iexplore.exe clusters.
PID 3676 chrome.exe PID 512 explorer.exe
WINDOW CLUSTER WINDOW CLUSTER
1 49 1 49
2 – 14 112 2 – 13 88
15 – 18 33 14 40
19 – 81 112 15 – 18 33
82 –83 49 19 40

20 –78 88
79 – 83 40
84 88
85 – 146 40

81

desktop and user interface feature. The chrome application starts with cluster 49 and

transitions to cluster 112, then to cluster 33, return to cluster 112 and terminates at

cluster 49.

The differences between cluster 112 and 33 is that there are more DLLs in clus-

ter 33 than in cluster 112. The amount is roughly 20 more DLLs per discrete time

instance. The processes flows associated with explorer.exe show two distinct behav-

ioral clusters, cluster 88 and 40. Looking at the features the key distinct difference

was the open registry keys present in cluster 40 and not in cluster 88.

Figure 4.9: Davies-Boldin Dunn Index Sliding Window 5 on Windows 7

4.3.2 BSOD - 19 Amount of Clusters needed. Figures 4.9, 4.10 and 4.11

shows the Dunn and the Davies-Bouldin index as the number of clusters increase for

BSOD-19. The graphs were generated in SYSTAT software [42] using the cluster

analysis tool for clustering. The algorithm starts by combining clusters into other

clusters that are near based on a distance measure, the euclidian distance measure was

used. All flows are each individual clusters then iteratively steps through combining

cluster with other clusters. A cluster can be represented as a cluster containing only

one member. The combining of clusters is performed until all clusters are grouped

together. The centroid nearest to one another were combined, distance measurement

82

Figure 4.10: Davies-Boldin Dunn Index Sliding Window 10 on Windows 7

Figure 4.11: Davies-Boldin Dunn Index Sliding Window 20 on Windows 7

83

against other instances to an established centroid. At points where the number of

clusters changes the Dunn and the Davies-Bouldin index was calculated. The graph

shows the solution for the cluster were all less than ten. This was not the case because

the clusters are too close together and having too small of a cluster value will have

some instances closer to clusters not associated to the processes.

Table 4.22: Hackfest CAE-18 TimeLine.
Period Window Duration Frequency

1
cmatoutput

(sec)
Sensor Capture

1 3 - 66 2011 08 11; 10:34:56 - 2011 08 11; 11:04:38 28 64
2 67 - 113 2011 08 11; 11:12:55 - 2011 08 11; 11:34:32 28 47
3 114 - 223 2011 08 11; 11:42:46 - 2011 08 11; 12:34:35 28 111
4 224 - 245 2011 08 11; 12:42:49 - 2011 08 11; 12:53:49 31 22

Table 4.23: Hackfest CAE-18 chrome.exe, iexplore.exe clusters
PID 552 explorer.exe PID 576 iexplore.exe PID 3172 chrome.exe
WINDOW CLUSTER WINDOW CLUSTER WINDOW CLUSTER
1 – 241 40 1 – 241 112 1 – 2 21

3 – 241 85

PID 1804 nessussvrmanag PID 1984 chrome.exe PID 3900 iexplore.exe
WINDOW CLUSTER WINDOW CLUSTER WINDOW CLUSTER
1 – 2 77 1 79 226 – 227 49
3 – 240 92 2 – 3 101 228 – 241 112
241 98 4 – 240 3

241 52

PID 844 chrome.exe PID 2772 iexplore.exe PID 3080 chrome.exe
WINDOW 1 WINDOW CLUSTER WINDOW CLUSTER
1 107 1 – 241 112 1 – 7 112
2 – 95 36 8 – 9 49
96 – 97 100
98 –226 36
227 – 230 3
231 – 239 36
240 3
241 52

4.3.3 Using BSOD - 19 clusters with other Data Set (CAE-18). Table 4.23

shows the process flows of the new data sets. The evaluation included explorer.exe,

iexplore.exe, chrome.exe, and nessvrmanag. The application names were present in

both data sets. The dates for CAE-18 was on an earlier date from the training data

of BSOD-19 where the clusters was established. The flows were evaluated using the

84

model of clusters previously established with the data set extracted on BSOD-19. The

clusters were previously defined and revaluated using the unseen data set of CAE-18.

The behavior of these process flows shows they were being assigned to the predicted

flow clusters.

For explorer.exe (PID 552) all flows were assigned to cluster 40. In BSOD-19

the explorer.exe application flows jump from cluster 40 to cluster 88. This shows

that the predicted cluster behavior for the new unseen flows was accurate. The

explorer.exe was behaving within the behavior of the learned clusters of 40. In BSOD-

19 explorer.exe exhibited two behaviors as it had two different cluster assignments

through out the life of the process. The feature differences from cluster 88 and 40

are that in cluster 40 registry information was provided as in cluster 88 that set of

features were missing. The CAE-18 staying in one cluster indicates that the behavior

is the same and that the registry information was present during these times of the

calculated features were calculated. A weak point to assigning the registry keys is

that the registry key information associated with the clusters are only present during

a memory dump of the CMAT sensor. This occurs during the gaps in time and is set

for approximately every 30 minutes by default. Looking deeply on the changes of the

cluster shows that there is a correlation between the memory dumps when the registry

information was included in the flows and when the registry key features were set to

zeros when the registry keys information was not available. With this key information

shows that the registry information was present in the flows and that the predicted

cluster of 40 was the closest cluster and all assigned to that cluster.

The internet browser’s process flows in CAE-18 showed identical behavior to

each other and similar behavior to the internet browser process flows from BSOD-19.

The processes flows of iexplore.exe (PID 576), iexplore.exe (PID 3900), iexplore.exe

(PID 2772), and chrome.exe (PID 3080) are the process flows that had similar behav-

ioral clusters . Table 4.25 shows the similarity based on the same cluster assignment

of these processes flows. As shown in Table 4.23 the clusters process flows that rep-

resents these browsers were landing in cluster 49 and 112. Looking at the features

85

between the two shows that cluster 49 has ports, TCP, and UDP activity associated

with the cluster as 112 does not. Cluster 49 is then the communication cluster and

that was previously identified when BSOD-19 was evaluated and learned the cluster

behavior association. In Table 4.23 shows that chrome.exe and iexplore.exe setup

cluster behavior started with cluster 49. The rest of the process flows landed in

cluster 112. BSOD-19 in Table 4.23 shows that cluster 112 was one of the cluster a

chrome.exe was assigned to. It also shows that cluster 49 was the first and last cluster

the same chrome.exe was assigned to. This gives a good indication that the browsers

in the new data sets are behaving like they should be by correlating similar cluster

memberships from the training data set of BSOD-19.

The other browsers on CAE-18 were chrome.exe (PID 3172), chrome.exe (1984),

and chrome.exe (PID 844). The flows associated with these processes did not have

similar behavior to each other but looking at the clusters established using BSOD-

19 did fall into the predicted clusters for browsers. For PID 3172 the two clusters

process flows were landing in were cluster 21 for the first two time windows and then

the flows settles down to cluster 85. Cluster 21 was not in the beginning clusters for

the browsers in BSOD-19 but with further investigation the start cluster has ports,

TCP and UDP activity within the cluster’s behavior. Cluster 21 was not a predefined

cluster behavior in BSOD-19 but the characteristics is similar to starting a browser

start up with ports, TCP and UDP features associated with the flows. Cluster 85

was a predefined cluster behavior for chrome.exe shown in Table 4.15. For PID 1984

the process flows starts in cluster 79 a predefined initialization browser cluster shown

in Table 4.15 for chorme.exe and iexplore.exe. The next two clusters its assigned to

was 101 and the startup sequence follows what the nessus application in BSOD-19

startup sequence followed. There might be some relationship to the nessus application

running in this machine and the other internet browser chrome.exe (PID 844). As

shown in Table 4.23 both has cluster 3 associated with the flows of these processes.

The difference of cluster 3 and cluster 36 was that it had more DLLs. This indicates

that more activity was going on during those times such as user interaction. The

86

nessusvrmanag application name with PID 1804 was assigned to cluster 77 for the

first two time windows then transitions to cluster 92 for the most of its process life from

time window 3 to 24 and terminates in cluster 98 during time window 241. Looking

at the past nessus application from BSOD-19 in Table 4.17 shows that cluster 77

was part of the startup setup for nessusvrmanag application and also shows a large

portion of the flows are assigned to cluster 92.

Clustering the flows from one machine then evaluating the unseen data set with

similar applications running will result into clusters with expected behavior clusters

for similar process flows. The application present on both Windows machines were

chrome.exe, iexplore.exe, nessessusvrmanag, and explorer.exe. The the new data set

was revaluated using the predefined clusters and assigned to the closest one based on

the euclidian distance. The new flows of similar behavior for the unseen process flows

in CAE-18 accurately selecting the predicted clusters for application name chrome.exe,

iexplore.exe, nessessusvrmang, and explorer.exe.

4.3.4 Data Collect and Problems. The problem with the uncontrolled ex-

periments was that few application were running. The processes found in memory

were predominantly native operating system processes like svchost.exe, lsass.exe and

others that were difficult model. As a result of the lack of processes running on both

machines the analysis were limited to the four processes chrome.exe, iexplore.exe,

nessessussvrmanag, and explorer.exe. Even with promising results of these four pro-

cesses a gold standard of process flows with labels of normal and anomalous still needs

to be developed to give a definite accuracy for the clusters. This research is just the

first step and lays the ground work for process flows and how they may be used in

the computer security world.

The number of native windows application were present in many clusters and

there was no way to narrow them down to on cluster or a few clusters. The behavior is

too dynamic where its responsible and can do many things in the system. A process

like svchost.exe displayed these characteristics. A flaw in using the clusters are a

87

malicious software might identify themselves as svchost.exe and then can get lucky

and go undetected because it will be assigned to cluster that svchost.exe is present

because in the training data its assigned to many clusters.

If a processes has a PID and in CMAT it identifies itself as one of these processes,

the flow generated would find the nearest centroid. The processes would be labeled

normal if it was one within the cluster’s threshold. The processes like svchost.exe and

smss.exe where the majority of the observable processes in CMAT was made it difficult

for labeling clusters based on application types when application were located in many

clusters across the solution space. The dissimilarity of each instance of svchost.exe

made it belong to several clusters in the developed model. A malware just needs to

change its application name it provides to the computer system, then under this the

malware would go undetected.

4.4 Summary

This chapter provides some interesting observations of the resulting clusters

of process flows. Solving the intrusion problem using a novel heuristic approach

takes time and numerous iterations of improvement. Providing this novel approach

to the research community this method could be improved or totally changed using

different machine learning techniques. Anomaly detection was always plagued with

high false positives alerts. This research does not tackle reducing false positive alerts

for systems that have already been developed but to propose a whole new approach all

together. An exploratory approach was adopted where this new idea on how to think

of processes in memory are characterized and using this new thinking determine if it

can be used somehow for detecting the intrusion on a computer. The flaws limited

a thorough verification test on the system. The data collection had flaws associated

with data collection tool malfunctions. The goal was to demonstrate on the data that

was considered valid that clustering processes flows with similar behavior was possible

with the novel way to describe a process. With improvements and maturity of the

sensor this approach can be examined in the future. The exploratory results presented

88

here shows promising results that future research based on this idea of “Host-Based

Process Flow Features” is a worth while direction to investigate for a new anomaly

based IDS method.

89

V. Conclusions

The results of this thesis demonstrates that processes described as dynamic statistical

behavior in memory can result in a usable structure for identifying behavior. Activities

on a computer for two data sets were generated to determine if host derived flow based

features could be used to behaviorally identify the activity. The first data set consisted

of scripted events in which all of the user activities and the timing of those activities

are known. The second makes use of an unknown situation and is a collection of data

from the HACKFEST exercise. Unfortunately, both of these data collections have

flaws associated with data collection tool malfunctions. The flaws appear as gaps

in the timeliness of the collection, increasing delays, and missing data. The analysis

presented in this thesis is primarily exploratory and is an attempt to inspire future

research in the use of “Host Based Process Flow Features.” The analysis does show

that the flow features do result on a strong behavioral clustering. However, because

of the problems with the data no definitive conclusions are drawn.

Assuming no inconsistency with the data, this method of clustering did converge.

An open issue is to identify a systematic way to come up with the threshold value.

Only one type of anomalous process was created and only tested against notepad.exe,

with the threshold value working as the maximum distance a cluster has as part

of its members. This could produce lots of error because some clusters are densely

populated only containing one type of application. This makes the threshold really

small and needs to be adjusted as new processes are assigned to that cluster and

identified as not anomalous.

The data collect was flawed with missing time slices or unusually large gaps in

time. This greatly affected the centers of the flows. The generation of the flows was

an inefficient implementation resource wise. The intent was to determine if statistical

process flow was attainable. Progress was made on the steps to generate flows but

needs to be more efficient. The sensor created thousands of files making associations

of statistical process behavior to flows difficult and timely.

90

5.1 Limitations and Assumptions

The biggest limitation was dealing with real world data. The generation of flows

was time consuming because of the amount of data and dealing with inconsistent time

events of sensor outputs. All of these limitation can drive to a wrong solution. To

deal with this time intervals inconsistency less than one minute of the CMAT feature

files was considered the same where the sliding window treated the five equally spaced

time events as a flow. The gaps where it was greater than a couple of minutes was

treated as a stopping criteria for the sliding window. The sliding window would start

after the gap in time. The result of doing this does shift the flows to other cluster

because the statistical changes occur especially if the gap in time were measured in

the hours.

In all anomaly detection methods the assumption is anything outside the norm

of a baseline characteristics in this case a cluster with a threshold is anomalous. This

might not be the case as various processes are known to be too diversified in feature

space where a processes like a an internet browsers would spawn many new processes

running to help handle the browser. Windows process like svchost.exe was the do

all things process for the operating system. This was problematic coming up with a

pattern to where these types of flow will be assigned in the cluster space. A browser

might have flash, visiting some website this will introduce new processes associated

with the browser. The browser would create another processes that handles the flash

management. New research needs to enhance this method as to include linking other

process that it spawns. A parent and child process relationship feature as part of the

194 vector of process flow should be included.

This research narrowed the observation to a few application types because not

all processes can be contained in a few cluster. The lack of user inputs to processes

might have affected the clusters of an application type to jump to other clusters, but

because of the lack of user interaction the few applications being tracked tend to stay

in one cluster during the whole time of the data collect.

91

5.1.1 Sensor Impact and Virtual Environment. The system is operating in

a virtual machine environment will have distinct differences on performances because

its capturing the guest’s OS memory. The performance differences and models created

using this method may affect the accuracy. Depending on the hosts machine where the

CMAT sensor is placed and running it might have slight difference on how the flows

are calculated. The sensor was assumed to have the same behavior without slowing

the the host down. During the the data capture it was evident that the system was

slowing down the guest operating system because of the lack of responsiveness by user

input in mouse movement, and keyboard inputs.

5.1.2 Memory as an Observable Environment. The only way to have 100%

observable of the threat space is to have every processes in a computer captured for

every permutations the processes can make. Then for each process have the corre-

sponding flows for each permutation. Also have the correct distribution of permu-

tation for each processes. After having all the flows for each permutation for each

processes then a clustering algorithm can provide the optimal solution.

Even if this was possible a signature method with an updating database of

known malicious behavior would be more feasible. A local solution is only possible

and a partial view of the threat space. To maximize this method and capture most

of the processes behavior a good data collect processes must be implemented. The

data collect ideally should be long enough that describes the normal behavior of each

processes of interest. The processes that spawn other processes was not handled and

linked to parent processes as there was no way to link this information from the

CMAT feature files.

5.2 Contributions

The contributions to the field of computer security is an alternative approach

to view processes in memory. This alternative view can aid to possible detection of

anomalous processes. This research provides the feature set of dynamic statistical

92

behavior of processes in memory called process flow. Processes are the active entity

of programs and by tapping into this data source a method was proposed to capture

a behavior of a processes from a starting time to an end time in memory. This novel

approach is limited to the processes running on the target system but could be im-

plemented on other machines. The only roadblock is the current sensor works only in

virtual environment setting. If the sensor could work on an operating system without

a virtual machine and have the sensor protected against attack this method could

be ported to other system like a computer system with the standard configuration

of the United States Air Force or supervisory control and data acquisition (SCADA)

computers. The assumptions of SCADA computers are they have limited processes.

The threat space and clusters would be much less than a home personal computer.

5.3 Future Work

The future work must include capturing more data with diversified processes

running. At the time of the data collect the realization of user interaction and making

processes iterate through permutations of different behavior was clearly lacking. A

target system of different types could also be for future focus. The USAF has a

standard configuration for a user computer. Creating models for these computer

system might be worthwhile for protecting the USAF working environment.

The feature set could be updated and studied on the possible redundancy some

features have describing the process flow. Reducing feature set could help guide to

a solution faster doing unnecessary calculations. There are many points of failure

to this method but the one that stands out is the flow generation. To have good

flows providing consistent data the sensor must be reliable. Part of the reason on

inconsistent data collect was due to user error and have wrong configuration for the

sensor.

The increase in tablets and cell phones as a computing platform are increasing

in popularity. Attackers might hone on these systems knowing users performs tasks

like banking, checking email, and possible shopping. The increase in use such as doing

93

banking transaction on these mobile devices increases the threat of identity theft and

stealing banking information.Future work could take a look at programs in these

systems and apply the processes flows to these machines. The future work are endless

but for any proposed heuristic approach to solving detection intrusions the need to

decrease false positive indication is the primary reason why these systems are not

found in most commercial markets. This research does not propose any replacement

of an IDS but just proposes an alternative view of the way a processes is viewed in

memory. New research can use this as the foundation of process flow and apply more

innovative approach to detecting intrusions.

94

Appendix A. Normal Activity Script

A.1 Script Labeled Data Collect

Table A.1: The normal activity script for computer
Start Computer Name Description

11:38 7 5 Opens Personal Information File in share
drive. Open Payroll document. Excel doc-
ument

11:43 7 5 Opens Internet Exporer. Googles Dogs Pic-
tures.

11:46 7 5 Downloads Doggy Picture From Internet
View Doggy Picture on Windows Photo
Viewer

11:48 7 5 Read Email, Microsoft Outlook
11:51 7 5 Close Outlook, Excell, and photo viewer

11:53 Googled ”Divorce in Ohio”

11:55 7 4 , 7 5 TIME CHANGED ONE HR AHEAD

12:57 7 5 Down Divorce Documents for Court PDF file
”otf.pdf”

12:59 7 4 Google Search ”Cage fighting”

13:03 7 5 Opened Calc.exe
13:03 7 4 video results in search need flash installed to

watch video. Installed flash from adobe.com
and installed flash

13:06 7 5 Opened sticky notes software

13:10 CMAT Memory Capture Seg Fault, Had to restart

13:12 7 4 Logged Off, 1 min later Logged on

95

13:14 7 4 Cage Fighting google search

13:15 7 4 Google Search ”Octagon”

13:17 7 4 Google search ”Cage Fighting Schedule dc”

13:20 7 5 Google search ”Divorce Law”

13:20 Seg Fault Restarted CMAT

13:27 7 5 Opened outlook email

13:29 7 4 Opened outlook

13:32 7 4 Sent Email to Scarlet and Peacock

14:54 7 4 Google Search ”Cage fighting schedule dc”

14:59 7 4 Downloaded Google chrome. IE keeps crash-
ing

15:01 7 4 Started Using Chrome. Google Search ”Cage
fighting women dc”

15:04 7 4 Youtube Search ”Cage Fighting Women”

15:05 7 4 Google Search ”Cock Fighting”

15:05 7 4 Google Search”Cock Fighting DC”

15:08 7 4 Google Search ”Cock Fighting Schedule”

15:15 7 4 Email Reply To Scarlet

96

15:18 7 5 Opened Paint. Made a Paint document and
altered puppy picture that was saved on
desktop

15:20 7 5 Opened Calculator

15:21 7 5 Played Kalimba music (Under Sample Mu-
sic), Could not play because not sound in-
stalled

15:23 7 5 Opened MS Excel

15:24 7 5 Opened MS power Point

15:24 7 5 Opened CMD window

15:25 7 5 Opened MS Words

15:27 7 5 dir command on CMD window

15:28 7 5 saved MS Excel named ”numtest”

15:34 7 4 Sent Email response to Mr Green

15:36 7 5 Downloaded Chrome and installed chrome

15:38 7 5 Downloaded Firefox and installed firefox

97

15:41 7 5 opened firefox, chrome, and firefox

15:42 7 5 Using firefox went to ESPN.com

15:43 7 5 Using chrome went to facebook.com

15:45 7 5 Using IE went to reddit.com

16:03 7 4 Network Drive Opened ”Joint Strike Fighter
Program” MS WORD and printed the docu-
ment. Printed it twice

16:14 7 4 Went to Pandora website and listened to in-
ternet radio. ”Britney Spears Radio Sta-
tioned”. Site not letting music play.

16:21 7 5 Open remote desktop shell to ms01
16:25 7 5 Opend classified project picture from remote

desktop

16:27 7 4 Copied ”Sleep Away” from Sample Music to
Desktop using CTR C CTRV command

16:29 7 4 Copied ”Sleep Away” from desktop to Doc-
ument Library using CTR C CTR V

16:42 7 4 Created shortcut of shared network to desk-
top

16:43 7 4 Copied File ”JointStrikeFighter” Work docu-
ment from shared folder ”Projects” to Desk-
top, Using Drag and Drop

98

16:48 7 4 Went to YouTube using Chrome
16:49 7 4 Went to facebook using another tab in

Chrome
16:50 7 4 Went to Gmail.com using another tab in

chrome
16:50 7 4 Went to reddit.com using another tab in

chrome
16:52 7 4 Opened Notepad
16:54 7 4 Opened Calc.exe

16:56 7 5 Logged from remote shell
16:57 7 5 Went to facebook.com using another tab in

IE
16:58 7 5 Went to Netflix.com using another tab in IE
16:59 7 5 Went to HULU using another tab in IE
17:04 7 5 Email Response Sent to Scarlet
17:07 7 4 Email Response to MR GREEN
17:10 7 5 Went to ESPN.COM using another tab in IE
17:54 7 4 Created Word Doc for Fighter Design pro-

posal in Documents Folder
17:55 7 4 Copy ”draft copy of fighter design” from

Document Folder to Desktop
18:05 7 4 cut and paste some text from ”JointStrike-

Fighter” Word Document on desktop to
”draft copy of fighter design” Word docu-
ment on desktop using right click mouse.
Saved Document

18:10 7 4 Copy ”draft copy of fighter design” from
desktop to network folder ”Projects” using
mouse cut and paste

18:12 7 5 closed all tabs of ID running
18:13 7 5 Closed all windows
18:24 7 4 Created folder in C:\called ”White Folder”
18:25 7 4 Copied and Pasted 2 files using Highlight and

right click copy and paste. Desktop to an-
other folder in ”C:\White Folder”

18:28 7 5 Down loaded pdf.reader and installed it
18:37 7 5 Opened Divorce Document on Desktop and

started filling it out
18:38 7 5 Printed the divorce document

99

Bibliography

1. M. Christodorescu, S. Jha, S. Seshia, D. Song, and R. Bryant, “Semantics-aware
malware detection,” in Security and Privacy, 2005 IEEE Symposium on, pp. 32–
46, IEEE, 2005.

2. P. Garcia-Teodoro, J. Diaz-Verdejo, G. Macia-Fernandez, and E. Vazquez,
“Anomaly-based network intrusion detection: Techniques, systems and chal-
lenges,” computers & security, vol. 28, no. 1-2, pp. 18–28, 2009.

3. I. Mukhopadhyay, M. Chakraborty, and S. Chakrabarti, “A comparative study
of related technologies of intrusion detection & prevention systems,” Journal of
Information Security, vol. 2, pp. 28–38, 2011.

4. T. Shon and J. Moon, “A hybrid machine learning approach to network anomaly
detection,” Information Sciences, vol. 177, no. 18, pp. 3799–3821, 2007.

5. M. Laureano, C. Maziero, and E. Jamhour, “Protecting host-based intrusion de-
tectors through virtual machines,” Computer Networks, vol. 51, no. 5, pp. 1275–
1283, 2007.

6. D. Malan and M. Smith, “Exploiting temporal consistency to reduce false posi-
tives in host-based, collaborative detection of worms,” in Proceedings of the 4th
ACM workshop on Recurring malcode, pp. 25–32, ACM, 2006.

7. C. Feng, J. Peng, H. Qiao, and J. Rozenblit, “Alert fusion for a computer host
based intrusion detection system,” in Engineering of Computer-Based Systems,
2007. ECBS’07. 14th Annual IEEE International Conference and Workshops on
the, pp. 433–440, IEEE, 2007.

8. G. Chilton, “Cyberspace leadership: Towards new culture, conduct, and capabil-
ities,” Air and Space Power Journal, vol. 23, no. 3, pp. 5–10, 2009.

9. G. Vigna and C. Kruegel, “Host-based intrusion detection,” Handbook of Infor-
mation Security. John Wiley and Sons, 2005.

10. R. Bace, “Nist special publication on intrusion detection systems,” tech. rep.,
DTIC Document, 2001.

11. Y. Chen, Y. Li, X. Cheng, and L. Guo, “Survey and taxonomy of feature se-
lection algorithms in intrusion detection system,” in Information Security and
Cryptology, pp. 153–167, Springer, 2006.

12. T. Daniels and E. Spafford, “Identification of host audit data to detect attacks on
low-level ip vulnerabilities,” Journal of Computer Security, vol. 7, no. 1, pp. 3–35,
1999.

13. R. Kemmerer and G. Vigna, “Intrusion detection: a brief history and overview,”
Computer, vol. 35, no. 4, pp. 27–30, 2002.

100

14. G. Tandon and P. Chan, “On the learning of system call attributes for host-based
anomaly detection,” International Journal of Artificial Intelligence Tools, vol. 15,
no. 6, pp. 875–892, 2006.

15. W. Lee and S. Stolfo, “Data mining approaches for intrusion detection,” in Pro-
ceedings of the 7th conference on USENIX Security Symposium-Volume 7, pp. 6–6,
Usenix Association, 1998.

16. T. Daniels and E. Spafford, “Identification of host audit data to detect attacks on
low-level ip vulnerabilities,” Journal of Computer Security, vol. 7, no. 1, pp. 3–35,
1999.

17. F. Maggi, M. Matteucci, and S. Zanero, “Detecting intrusions through system call
sequence and argument analysis,” IEEE Transactions on Dependable and Secure
Computing, pp. 381–395, 2010.

18. R. Moskovitch, S. Pluderman, I. Gus, D. Stopel, C. Feher, Y. Parmet, Y. Sha-
har, and Y. Elovici, “Host based intrusion detection using machine learning,” in
Intelligence and Security Informatics, 2007 IEEE, pp. 107–114, IEEE, 2007.

19. E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo, “A geometric frame-
work for unsupervised anomaly detection: Detecting intrusions in unlabeled
data,” Applications of Data Mining in Computer Security, vol. 6, pp. 77–102,
2002.

20. J. Erskine, G. Peterson, B. Mullins, and M. Grimaila, “Developing cyberspace
data understanding: using crisp-dm for host-based ids feature mining,” in Pro-
ceedings of the Sixth Annual Workshop on Cyber Security and Information Intel-
ligence Research, p. 74, ACM, 2010.

21. J. Ji, “Holistic network defense: Fusing host and network features for attack
classification,” tech. rep., DTIC Document, 2011.

22. H. Carvey, Windows Forensics and Incident Recovery (The Addison-Wesley Mi-
crosoft Technology Series). Addison-Wesley Professional, 2004.

23. X. Hoang, J. Hu, and P. Bertok, “A program-based anomaly intrusion detection
scheme using multiple detection engines and fuzzy inference,” Journal of Network
and Computer Applications, vol. 32, no. 6, pp. 1219–1228, 2009.

24. S. James and J. Nordby, Forensic science: an introduction to scientific and in-
vestigative techniques. CRC, 2005.

25. I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,”
The Journal of Machine Learning Research, vol. 3, pp. 1157–1182, 2003.

26. S. Zanero and S. Savaresi, “Unsupervised learning techniques for an intrusion
detection system,” in Proceedings of the 2004 ACM symposium on Applied com-
puting, pp. 412–419, ACM, 2004.

101

27. L. Portnoy, E. Eskin, and S. Stolfo, “Intrusion detection with unlabeled data using
clustering,” in In Proceedings of ACM CSS Workshop on Data Mining Applied to
Security (DMSA-2001, Citeseer, 2001.

28. W. Wang, X. Guan, X. Zhang, and L. Yang, “Profiling program behavior for
anomaly intrusion detection based on the transition and frequency property of
computer audit data,” computers & security, vol. 25, no. 7, pp. 539–550, 2006.

29. T. Shon and J. Moon, “A hybrid machine learning approach to network anomaly
detection,” Information Sciences, vol. 177, no. 18, pp. 3799–3821, 2007.

30. A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller, “An
overview of ip flow-based intrusion detection,” Communications Surveys & Tuto-
rials, IEEE, vol. 12, no. 3, pp. 343–356, 2010.

31. C. Zhou, C. Leckie, and S. Karunasekera, “A survey of coordinated attacks and
collaborative intrusion detection,” Computers & Security, vol. 29, no. 1, pp. 124–
140, 2010.

32. D. Yeung and C. Chow, “Parzen-window network intrusion detectors,” in Pattern
Recognition, 2002. Proceedings. 16th International Conference on, vol. 4, pp. 385–
388, IEEE, 2002.

33. Y. Li, B. Fang, L. Guo, and Y. Chen, “Network anomaly detection based on
tcm-knn algorithm,” in Proceedings of the 2nd ACM symposium on Information,
computer and communications security, pp. 13–19, ACM, 2007.

34. A. Moore, D. Zuev, and M. Crogan, “Discriminators for use in flow-based classi-
fication,” Technical report, University of Cambridge, Computer Laboratory, 2005.

35. M. Roughan, S. Sen, O. Spatscheck, and N. Duffield, “Class-of-service mapping for
qos: a statistical signature-based approach to ip traffic classification,” in Proceed-
ings of the 4th ACM SIGCOMM conference on Internet measurement, pp. 135–
148, ACM, 2004.

36. J. Okolica and G. Peterson, “A compiled memory analysis tool,” Advances in
Digital Forensics VI, pp. 195–204, 2010.

37. W. Li, A. Canine, M. Moore, and R. Boola, “Efficient application identification
and the temporal and spatial stability of classification schema,” Computer Net-
works, vol. 53.

38. I. Witten, E. Frank, and M. Hall, Data Mining: Practical machine learning tools
and techniques. Morgan Kaufmann, 2011.

39. I. Witten, E. Frank, and M. Hall, Data Mining: Practical machine learning tools
and techniques. Morgan Kaufmann, 2011.

40. D. Davies and D. Bouldin, “A cluster seperation measur,” Pattern Analysis and
Machine Intelligence, IEEE Tansactions on, no. 2, pp. 224 – 227, 1979.

102

41. J. Bezdek and N. Pal, “Cluster validation with generalized dunn’s indices,” in
Artificial Neural Networks and Expert System, 1995. Proceedings., Second New
Zealand International Two-Stream Conference on, pp. 190 – 193, IEEE, 1995.

42. L. Wilkinson, G. Blank, and C. Gruber, Desktop Data Analysis SYSTAT. Prentice
Hall PTR, 1996.

103

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

14–06–2012 Master’s Thesis Sep 2010 — Jun 2012

Process Flow Features as a Host-Based Event
Knowledge Representation

Pacer, Benhur, E., Captain, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GCS/ENG/12-06

intentionally left blank

Approval for public release; distribution is unlimited.

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

The detection of malware is of great importance but even non-malicious software can be used for malicious purposes.
Monitoring processes and their associated information can characterize normal behavior and help identify malicious
processes or malicious use of normal process by measuring deviations from the learned baseline. This exploratory
research describes a novel host feature generation process that calculates statistics of an executing process during a
window of time called a process flow. Process flows are calculated from key process data structures extracted from
computer memory using virtual machine introspection. Each flow cluster generated using k-means of the flow features
represents a behavior where the members of the cluster all exhibit similar behavior. Testing explores associations between
behavior and process flows that in the future may be useful for detecting unauthorized behavior or behavioral trends on a
host. Analysis of two data collections demonstrate that this novel way of thinking of process behavior as process flows
can produce baseline models in the form of clusters that do represent specific behaviors.

Host-Based, Intrusion Detection System, Process Flow Features, k-means clustering

U U U UU 117

Dr. Gilbert L. Peterson

(937) 785–6565; Gilbert.Peterson@afit.edu

	AFIT
	sign

